Estrategias alternativas contra la reprogramación metabólica y la síntesis de proteínas en el cáncer

Autores/as

  • Alejandro Schcolnik-Cabrera Investigador posdoctoral, Departamento de Microbiología Médica e Inmunología, Facultad de Medicina y Odontología, Universidad de Alberta, Canadá https://orcid.org/0000-0001-7734-3253

DOI:

https://doi.org/10.30973/inventio/2025.21.55/8%20

Palabras clave:

Cáncer, Reprogramación metabólica, Energía, Metabolismo oncológico, síntesis de proteínas

Resumen

Este artículo examina la reprogramación metabólica en el cáncer y cómo la síntesis de proteínas está interconectada en este proceso, destacando estrategias alternativas que podrían ayudar a interrumpir estos ejes y ofrecer tratamientos más efectivos y específicos. Al centrarse en el metabolismo oncológico, es posible abrir la puerta a terapias menos invasivas sin afectar significativamente la salud sistémica, lo cual ocurre comúnmente con terapias habituales. Aunque aún se requiere más investigación al respecto, la inhibición conjunta de estas rutas promete ser una vía satisfactoria para el tratamiento contra el cáncer, en particular para las formas resistentes a terapias convencionales.

Biografía del autor/a

Alejandro Schcolnik-Cabrera, Investigador posdoctoral, Departamento de Microbiología Médica e Inmunología, Facultad de Medicina y Odontología, Universidad de Alberta, Canadá

Investigador posdoctoral, Departamento de Microbiología Médica e Inmunología, Facultad de Medicina y Odontología, Universidad de Alberta, Canadá

Citas

Abel, K. y Jurnak, F. (1996). A complex profile of protein elongation: translating chemical energy into molecular movement. Structure, 4(3), 229-238. https://doi.org/10.1016/s0969-2126(96)00027-5

Akram, M. (2013). Mini-review on glycolysis and cancer. Journal of Cancer Education, 28(3), 454-457. https://doi.org/10.1007/s13187-013-0486-9

Al-Kuraishy, H. M., Sulaiman, G. M., Mohsin, M. H., Mohammed, H. A., Dawood, R. A., Albuhadily, A. K., Al-Gareeb, A. I., Albukhaty, S. y Abomughaid, M. M. (2025). Targeting of AMPK/MTOR signaling in the management of atherosclerosis: outmost leveraging. International Journal Biological Macromolecules, 309, parte 2, 142933. https://doi.org/10.1016/j.ijbiomac.2025.142933

Basso, P. J., Schcolnik-Cabrera, A., Zhu, M., Strachan, E., Clemente-Casares, X. y Tsai, S. (2025). Weight loss-associated remodeling of adipose tissue immunometabolism. Obesity Reviews, 26(12), e13975. https://doi.org/10.1111/obr.13975

Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. y Lu, Z. (2021). Lipid metabolism and cancer. Journal of Experimental Medicine, 218(1), e20201606. https://doi.org/10.1084/jem.20201606

Borst, P. (2012). Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biology, 2(5), 120066. https://doi.org/10.1098/rsob.120066

Butler, M., Van der Meer, L. T. y Van Leeuwen, F. N. (2021). Amino acid depletion therapies: starving cancer cells to death. Trends in Endocrinology & Metabolism, 32(6), 367-381. https://doi.org/10.1016/j.tem.2021.03.003

Cencic, R., Carrier, M., Galicia-Vázquez, G., Bordeleau, M.-E., Sukarieh, R., Bourdeau, A., Brem, B., Teodoro, J. G., Greger, H., Tremblay, M. L. Porco Jr., J. A. y Pelletier, J. (2009). Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS One, 4(4), e5223. https://doi.org/10.1371/journal.pone.0005223

Chan, K., Robert, F., Oertlin, C., Kapeller-Libermann, D., Avizonis, D., Gutiérrez, J., Handly-Santana, A., Doubrovin, M., Park, J., Schoepfer, C., Da Silva, B., Yao, M., Gorton, F., Shi, J., Thomas, C. J., Brown, L. E., Porco Jr., J. A., Pollak, M., Larsson, O., Pelletier, J. y Chio, I. C. (2019). eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nature Communications, 10(1), 5151. https://doi.org/10.1038/s41467-019-13086-5

Chandel, N. S. (2021). Lipid metabolism. Cold Spring Harbor Perspectives Biology, 13(9). https://doi.org/10.1101/cshperspect.a040576

Chen, G., Bao, B., Cheng, Y., Tian, M., Song, J., Zheng, L. y Tong, Q. (2023). Acetyl-CoA metabolism as a therapeutic target for cancer. Biomedicine & Pharmacotheraphy, 168, 115741. https://doi.org/10.1016/j.biopha.2023.115741

Chen, Q., Kirk, K., Shurubor, Y. I., Zhao, D., Arreguin, A. J., Shahi, I., Valsecchi, F., Primiano, G., Calder, E. L., Carelli, V., Denton, T. T., Beal, M. F., Gross, S. S., Manfredi, G. y D’Aurelio, M. (2018). Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metabolism. A Cell Press Journal, 27(5), 1007-1025. https://doi.org/10.1016/j.cmet.2018.03.002

Cluntun, A. A., Lukey, M. J., Cerione, R. A. y Locasale, J. W. (2017). Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer, 3(3), 169-180. https://doi.org/10.1016/j.trecan.2017.01.005

Cohen, A. L., Holmen, S. L. y Colman, H. (2013). IDH1 and IDH2 mutations in gliomas. Current Neurology and Neuroscience Reports, 13(5), 345. https://doi.org/10.1007/s11910-013-0345-4

Cordova, R. A., Misra, J., Amin, P. H., Klunk, A. J., Damayanti, N. P., Carlson, K. R., Elmendorf, A. J., Kim, H.-G., Mirek, E. T., Elzey, B. D., Miller, M. J., Dong, X. C., Cheng, L., Anthony, T. G., Pili, R., Wek, R. C. y Staschke, K. A. (2022). GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis. eLife, 11, e81083. https://doi.org/10.7554/elife.81083

Ebright, R. Y., Lee, S., Wittner, B. S., Niederhoffer, K. L., Nicholson, B. T., Bardia, A., Truesdell, S., Wiley, D. F., Wesley, B., Li, S., Mai, A., Aceto, N., Vincent-Jordan, N., Szabolcs, A., Chirn, B., Kreuzer, J., Comaills, V., Kalinich, M., Haas, W., … y Micalizzi, D. (2020). Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020, 367(6485), 1468-1473. https://doi.org/10.1126/science.aay0939

Faubert, B., Solmonson, A. y DeBerardinis, R. J. (2020). Metabolic reprogramming and cancer progression. Science, 368(6487), eaaw5473. https://doi.org/10.1126/science.aaw5473

Flavin, R., Peluso, S., Nguyen, P. L. y Loda, M. (2010). Fatty acid synthase as a potential therapeutic target in cancer. Future Oncology, 6(4), 551-562. https://doi.org/10.2217/fon.10.11

Fooks, K., Galicia-Vázquez, G., Gife, V., Schcolnik-Cabrera, A., Nouhi, Z., Poon, W. W. L., Luo, V., Rys, R. N., Aloyz, R., Orthwein, A., Johnson, N. A., Hulea, L. y Mercier, F. E. (2022). EIF4A inhibition targets bioenergetic homeostasis in AML MOLM-14 cells in vitro and in vivo and synergizes with cytarabine and venetoclax. Journal of Experimental & Clinical Cancer Research, 41(1), 340. https://doi.org/10.1186/s13046-022-02542-8

Gatenby, R. A. y Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4(11), 891-899. https://doi.org/10.1038/nrc1478

Gife, V., Fooks, K., Berthelemy, J., Schcolnik-Cabrera, A., Galicia-Vázquez, G., Nouhi, Z., Aloyz, R., Rys, R. N., Johnson, N. A., Mercier, F. E. y Hulea, L. (2023). mRNA translation inhibition targets bioenergetic homeostasis in AML cells in vitro and in vivo and synergizes with cytarabine and venetoclax. Blood, 142, suplem. 1, 5742. https://doi.org/10.1182/blood-2023-186142

Gonsalves, W. I., Jang, J. S., Jessen, E., Hitosugi, T., Evans, L. A., Jevremovic, D., Pettersson, X. M., Bush, A. G., Gransee, J., Anderson, E. I., Kumar, S. K. y Nair, K. S. (2020). In vivo assessment of glutamine anaplerosis into the TCA cycle in human pre-malignant and malignant clonal plasma cells. Cancer & Metabolism, 8(1), 29. https://doi.org/10.1186/s40170-020-00235-4

Hajdu, S. I. (2011). A note from history: landmarks in history of cancer, part 1. Cancer, 117(5), 1097-1102. https://doi.org/10.1002/cncr.25553

Hanahan, D. y Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. https://doi.org/10.1016/s0092-8674(00)81683-9

Hanahan, D. y Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. https://doi.org/10.1016/j.cell.2011.02.013

Hao, P., Yu, J., Ward, R., Liu, Y., Hao, Q., An, S. y Xu, T. (2020). Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Communication and Signaling, 18(1), 175. https://doi.org/10.1186/s12964-020-00607-9

Hardwick, J. M. y Soane, L. (2013). Multiple functions of BCL-2 family proteins. Cold Spring Harbor Perspectives in Biology, 5(2), a008722. https://doi.org/10.1101/cshperspect.a008722

Hawly, J., Murcar, M. G., Schcolnik-Cabrera, A. e Issa, M. E. (2024). Glioblastoma stem cell metabolism and immunity. Cancer and Metastasis Reviews, 43(3), 1015-1035. https://doi.org/10.1007/s10555-024-10183-w

Ho, B., Baryshnikova, A. y Brown, G. W. (2018). Unification of protein abundance datasets yields a quantitative saccharomyces cerevisiae proteome. Cell Systems, 6(2), 192-205. https://doi.org/10.1016/j.cels.2017.12.004

Hulea, L., Gravel, S.-P., Morita, M., Cargnello, M., Uchenunu, O., Im, Y. K., Lehuédé, C., Ma, E. H., Leibovitch, M., McLaughlan, S., Blouin, M.-J., Parisotto, M., Papavasiliou, V., Lavoie, C., Larsson, O., Ohh, M., Ferreira, T., Greenwood, C., Bridon, G., … y Topisirovic, I. (2018). Translational and HIF-1alpha-dependent metabolic reprogramming underpin metabolic plasticity and responses to kinase inhibitors and biguanides. Cell Metabolism, 28(6), 817-832. https://doi.org/10.1016/j.cmet.2018.09.001

Jewett, M. C., Miller, M. L., Chen, Y. y Swartz, J. R. (2008). Continued protein synthesis at low [ATP] and [GTP] enables cell adaptation during energy limitation. Journal of Bacteriology, 191(3), 1083-1091. https://doi.org/10.1128/JB.00852-08

Jia, X., He, X., Huang, C., Li, J., Dong, Z. y Liu, K. (2024). Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduction and Targeted Therapy, 9, 44. https://doi.org/10.1038/s41392-024-01749-9

Jiménez-Valerio, G. y Casanovas, O. (2017). Angiogenesis and metabolism: entwined for therapy resistance. Trends in Cancer, 3(1), 10-18. https://doi.org/10.1016/j.trecan.2016.11.007

Jin, J., Byun, J.-K., Choi, Y.-K. y Park, K.-G. (2023). Targeting glutamine metabolism as a therapeutic strategy for cancer. Experimental & Molecular Medicine, 55(4), 706-715. https://doi.org/10.1038/s12276-023-00971-9

Kang, J.-S. (2020). Dietary restriction of amino acids for cancer therapy. Nutrition & Metabolism, 17, 20. https://doi.org/10.1186/s12986-020-00439-x

Kim, H.-J., Maiti, P. y Barrientos, A. (2017). Mitochondrial ribosomes in cancer. Seminars in Cancer Biology, 47, 67-81. https://doi.org/10.1016/j.semcancer.2017.04.004

Kridel, S. J., Axelrod, F., Rozenkrantz, N. y Smith, J. W. (2004). Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Research, 64(6), 2070-2075. https://doi.org/10.1158/0008-5472.CAN-03-3645

Lee, L. J., Papadopoli, D., Jewer, M., Del Rincon, S., Topisirovic, I., Lawrence, M. G. y Postovit, L. M. (2021). Cancer plasticity: the role of mRNA translation. Trends in Cancer, 7(2), 134-145. https://doi.org/10.1016/j.trecan.2020.09.005

Li, T., Copeland, C. y Le, A. (2021). Glutamine metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, 17-38. https://doi.org/10.1007/978-3-030-65768-0_2

Liberti, M. V. y Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211-218. https://doi.org/10.1016/j.tibs.2015.12.001

Lindqvist, L. M., Tandoc, K., Topisirovic, I. y Furic, L. (2018). Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Current Opinion in Genetics & Development, 48, 104-111. https://doi.org/10.1016/j.gde.2017.11.003

Marques-Ramos, A. y Cervantes, R. (2023). Expression of mTOR in normal and pathological conditions. Molecular Cancer, 22(1), 112. https://doi.org/10.1186/s12943-023-01820-z

Morandi, A. y Indraccolo, S. (2017). Linking metabolic reprogramming to therapy resistance in cancer. Biochimica et Biophysica Acta, 1868(1), 1-6. https://doi.org/10.1016/j.bbcan.2016.12.004

Mossmann, D., Park, S. y Hall, M. N. (2018). mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews Cancer, 18(12), 744-757. https://doi.org/10.1038/s41568-018-0074-8

Mostafavi, S., Zalpoor, H. y Hassan, Z. M. (2022). The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cellular & Molecular Biology Letters, 27(1), 58. https://doi.org/10.1186/s11658-022-00356-2

Nagao, A., Nakanishi, Y., Yamaguchi, Y., Mishina, Y., Karoji, M., Toya, T., Fujita, T., Iwasaki, S., Miyauchi, K., Sakaguchi, Y. y Suzuki, T. (2023). Quality control of protein synthesis in the early elongation stage. Nature Communications, 14, 2704. https://doi.org/10.1038/s41467-023-38077-5

Nwosu, Z. C., Piorońska, W., Battello, N., Zimmer, A. D., Dewidar, B., Han, M., Pereira, S., Blagojevic, B., Castven, D., Charlestin, V., Holenya, P., Lochead, J., De la Torre, C., Gretz, N., Sajjkulnukit, P., Zhang, L., Ward, M. H., Marquardt, J. U., Di Magliano, M. P., … y Dooley, S. (2020). Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine, 54, 102699. https://doi.org/10.1016/j.ebiom.2020.102699

Offman, M. N., Krol, M., Patel, N., Krishnan, S., Liu, J., Saha, V. y Bates, P. A. (2011). Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood, 117(5), 1614-1621. https://doi.org/10.1182/blood-2010-07-298422

Pan, S., Fan, M., Liu, Z., Li, X. y Wang, H. (2020). Serine, glycine and one‑carbon metabolism in cancer (Review). International Journal of Oncology, 58(2), 158-170. https://doi.org/10.3892/ijo.2020.5158

Patra, K. C. y Hay, N. (2014). The pentose phosphate pathway and cancer. Trends in Biochemical Sciences, 39(8), 347-354. https://doi.org/10.1016/j.tibs.2014.06.005

Paul, S., Ghosh, S. y Kumar, S. (2022). Tumor glycolysis, an essential sweet tooth of tumor cells. Seminars in Cancer Biology, 86, parte 3, 1216-1230. https://doi.org/10.1016/j.semcancer.2022.09.007

Pelletier, J., Graff, J., Ruggero, D. y Sonenberg, N. (2015). Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 2015, 75(2), 250-263. https://doi.org/10.1158/0008-5472.can-14-2789

Petan, T. (2020). Lipid droplets in cancer. Reviews of Physiology, Biochemistry and Pharmacology, 185, 53-86. https://doi.org/10.1007/112_2020_51

Pinheiro, C., García, E. A., Morais-Santos, F., Moreira, M. A. R., Almeida, F. M., Jubé, L. F., Queiroz, G. S., Paula, É. C., Andreoli, M. A., Villa, L. L., Longatto-Filho, A. y Baltazar, F. (2015). Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer, 15, 835. https://doi.org/10.1186/s12885-015-1842-4

Raimondi, V., Ciotti, G., Gottardi, M. y Ciccarese, F. (2022). 2-hydroxyglutarate in acute myeloid leukemia: a journey from pathogenesis to therapies. Biomedicines, 10(6), 1356. https://doi.org/10.3390/biomedicines10061359

Ratnikov, B., Aza-Blanc, P., Ronai, Z. A., Smith, J. W., Osterman, A. L. y Scott, D. A. (2015). Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma. Oncotarget, 6(10), 7379-7389. https://doi.org/10.18632/oncotarget.3132

Rena, G., Hardie, D. G. y Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577-1585. https://doi.org/10.1007/s00125-017-4342-z

Rothschild, B. M., Tanke, D. H., Helbling II, M. y Martin, L. D. (2003). Epidemiologic study of tumors in dinosaurs. Naturwissenschaften, 90(11), 495-500. https://doi.org/10.1007/s00114-003-0473-9

Ruan, H., Li, X., Xu, X., Leibowitz, B. J., Tong, J., Chen, L., Ao, L., Xing, W., Luo, J., Yu, Y., Schoen, R. E., Sonenberg, N., Lu, X., Zhang, L. y Yu, J. (2020). eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. eLife, 9, e60151. https://doi.org/10.7554/elife.60151

Santos, C. R. y Schulze, A. (2012). Lipid metabolism in cancer. FEBS J, 279(15), 2610-2623. https://doi.org/10.1111/j.1742-4658.2012.08644.x

Schcolnik-Cabrera, A., Chavez-Blanco, A., Dominguez-Gomez, G., Juarez, M., Lai, D., Hua, S., Tovar, A. R., Diaz-Chavez, J. y Duenas-Gonzalez, A. (2020). The combination of orlistat, lonidamine and 6-diazo-5-oxo-L-norleucine induces a quiescent energetic phenotype and limits substrate flexibility in colon cancer cells. Oncology Letters, 20(3), 3053-3060. https://doi.org/10.3892/ol.2020.11838

Schcolnik-Cabrera, A., Chávez-Blanco, A., Domínguez-Gómez, G., Juárez, M., Vargas-Castillo, A., Ponce-Toledo, R. I., Lai, D., Hua, S., Tovar, A. R., Torres, N., Pérez-Montiel, D., Díaz-Chávez, J. y Dueñas-González, A. (2021). Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Scientific Reports, 11(1), 5222. https://doi.org/10.1038/s41598-021-84538-6

Schcolnik-Cabrera, A., Chávez-Blanco, A., Domínguez-Gómez, G., Taja-Chayeb, L., Morales-Bárcenas, R., Trejo-Becerril, C., Pérez-Cárdenas, E., González-Fierro, A. y Dueñas-González, A. (2018). Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opinion Investigational Drugs, 27(5), 475-489. https://doi.org/10.1080/13543784.2018.1471132

Schcolnik-Cabrera, A., Domínguez-Gómez, G., Chávez-Blanco, A., Ramírez-Yautentzi, M., Morales-Bárcenas, R., Díaz-Chávez, J., Taja-Chayeb, L. y Dueñas-González, A. (2019). A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncology Letters, 18(6), 6909-6916. https://www.spandidos-publications.com/10.3892/ol.2020.11303

Schcolnik-Cabrera, A. y Juárez-López, D. (2022). Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cellular Oncology, 45(5), 831-859. https://doi.org/10.1007/s13402-022-00706-4

Scott, D. A., Richardson, A. D., Filipp, F. V., Knutzen, C. A., Chiang, G. G., Ronai, Z. A., Osterman, A. L. y Smith, J. W. (2011). Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg Effect. Journal of Biological Chemistry, 286(49), 42626-42634. https://doi.org/10.1074/jbc.M111.282046

Scott, L., Lamb, J., Smith, S. y Wheatley, D. N. (2000). Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. British Journal of Cancer, 83(6), 800-810. https://doi.org/10.1054/bjoc.2000.1353

Shen, P., Reineke, L. C., Knutsen, E., Chen, M., Pichler, M., Ling, H. y Calin, G. A. (2018). Metformin blocks MYC protein synthesis in colorectal cancer via mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E signaling. Molecular Oncology, 12(11), 1856-1870. https://doi.org/10.1002/1878-0261.12384

Shi, L., Chen, S., Yang, L. y Li, Y. (2013). The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. Journal of Hematology & Oncology, 6(1), 74. https://doi.org/10.1186/1756-8722-6-74

Smith, L. K., Parmenter, T., Kleinschmidt, M., Kusnadi, E. P., Kang, J., Martin, C. A., Lau, P., Patel, R., Lorent, J., Papadopoli, D., Trigos, A., Ward, T., Rao, A. D., Lelliott, E., Sheppard, K., Goode, D., Hicks, R. J., Tiganis, T., Simpson, K., … y McArthur, G. A. (2022). Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma. Nature Communications, 13(1), 1100. https://doi.org/10.1038/s41467-022-28705-x

Son, S. M., Park, S. J., Lee, H., Siddiqi, F., Lee, J. E., Menzies, F. M. y Rubinsztein, D. C. (2019). Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metabolism, 29(1), 192-201. https://doi.org/10.1016/j.cmet.2018.08.013

Tahmasebi, S., Sonenberg, N., Hershey, J. W. B. y Mathews, M. B. (2019). Protein synthesis and translational control: a historical perspective. Cold Spring Harbor Perspectives in Biology, 11(9), a035584. https://doi.org/10.1101/cshperspect.a035584

Tobón-Cornejo, S., Vargas-Castillo, A., Juárez, M., Acevedo-Carabantes, J. A., Noriega, L. G., Granados-Portillo, O., Chávez-Blanco, A., Morales-Bárcenas, R., Torres, N., Tovar, A. R. y Schcolnik-Cabrera, A. (2025). Metabolic reprogramming and synergistic cytotoxicity of genistein and chemotherapy in human breast cancer cells. Life Sciences, 370, 123562. https://doi.org/10.1016/j.lfs.2025.123562

Tufail, M., Jiang, C.-H. y Li, N. (2024). Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Molecular Cancer, 23(1), 203. https://doi.org/10.1186/s12943-024-02119-3

Vicens, Q. y Kieft, J. S. (2022). Thoughts on how to think (and talk) about RNA structure. Proceedings of the National Academy of Sciences, 119(17), e2112677119. https://doi.org/10.1073/pnas.2112677119

Wahba, A., Rath, B. H., Bisht, K., Camphausen, K. y Tofilon, P. J. (2016). Polysome profiling links translational control to the radioresponse of glioblastoma stem-like cells. Cancer Research, 76(10), 3078-3087. https://doi.org/10.1158/0008-5472.CAN-15-3050

Wang, H., Nicolay, B. N., Chick, J. M., Gao, X., Geng, Y., Ren, H., Gao, H., Yang, G., Williams, J. A., Suski, J. M., Keibler, M. A., Sicinska, E., Gerdemann, U., Haining, W. N., Roberts, T. M., Polyak, K., Gygi, S. P., Dyson, N. J. y Sicinski, P. (2017). The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature, 546(7658), 426-430. https://doi.org/10.1038/nature22797

Ward, A. V., Riley, D., Cosper, K. E., Finlay-Schultz, J., Brechbuhl, H. M., Libby, A. E., Hill, K. B., Varshney, R. R., Kabos, P., Rudolph, M. C. y Sartorius, C. A. (2025). Lipid metabolic reprogramming drives triglyceride storage and variable sensitivity to FASN inhibition in endocrine-resistant breast cancer cells. Breast Cancer Research, 27(1), 32. https://doi.org/10.1186/s13058-025-01991-1

Webb, T. E., Davies, M., Maher, J. y Sarker, D. (2020). The eIF4A inhibitor silvestrol sensitizes T-47D ductal breast carcinoma cells to external-beam radiotherapy. Clinical and Translational Radiation Oncology, 24, 123-126. https://doi.org/10.1016/j.ctro.2020.07.002

Wu, X., Xie, W., Xie, W., Wei, W. y Guo, J. (2022). Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death & Disease, 13(7), 646. https://doi.org/10.1038/s41419-022-05081-4

Yadav, D., Yadav, A., Bhattacharya, S., Dagar, A., Kumar, V. y Rani, R. (2024). GLUT and HK: Two primary and essential key players in tumor glycolysis. Seminars in Cancer Biology, 100, 17-27. https://doi.org/10.1016/j.semcancer.2024.03.001

Yang, L., Miao, L., Liang, F., Huang, H., Teng, X., Li, S., Nuriddinov, J., Selzer, M. E. y Hu, Y. (2014). The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nature Communications, 5, 5416. https://doi.org/10.1038/ncomms6416

Yetkin-Arik, B., Vogels, I. M. C., Nowak-Sliwinska, P., Weiss, A., Houtkooper, R. H., Van Noorden, C. J. F., Klaassen, I. y Schlingemann, R. O. (2019). The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Scientific Reports, 9(1), 12608. https://doi.org/10.1038/s41598-019-48676-2

Zadra, G., Ribeiro, C. F., Chetta, P., Ho, Y., Cacciatore, S., Gao, X., Syamala, S., Bango, C., Photopoulos, C., Huang, Y., Tyekucheva, S., Bastos, D. C., Tchaicha, J., Lawney, B., Uo, T., D’Anello, L., Csibi, A., Kalekar, R., Larimer, B., … y Loda, M. (2018). Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 631-640. https://doi.org/10.1073/pnas.1808834116

Zhang, Y. y Wang, X. (2020). Targeting the Wnt/beta-catenin signaling pathway in cancer. Journal of Hematology & Oncology, 13(1), 165. https://doi.org/10.1186/s13045-020-00990-3

Zhu, Y., Zhou, Z., Du, X., Lin, X., Liang, Z.-M., Chen, S., Sun, Y., Wang, Y., Na, Z., Wu, Z., Zhong, J., Han, B., Zhu, X., Fu, W., Li, H., Luo, M.-L. y Hu, H. (2025). Cancer cell-derived arginine fuels polyamine biosynthesis in tumor-associated macrophages to promote immune evasion. Cancer Cell, 43(6), 1045-1060. https://doi.org/10.1016/j.ccell.2025.03.015

Estrategias alternativas contra la reprogramación metabólica y la síntesis de proteínas en el cáncer

Descargas

Publicado

2025-12-09

Cómo citar

Schcolnik-Cabrera, A. (2025). Estrategias alternativas contra la reprogramación metabólica y la síntesis de proteínas en el cáncer. Inventio, 1–24. https://doi.org/10.30973/inventio/2025.21.55/8

Número

Sección

Ciencia y tecnología