Ecología evolutiva de la resistencia a insecticidas en el mosquito Aedes (stegomyia) aegypti

Autores/as

DOI:

https://doi.org/10.30973/inventio/2023.19.47/1

Palabras clave:

enfermedades infecciosas, control, insecticidas, mosquitos, resistencia, salud pública

Resumen

El mosquito Aedes (stegomyia) aegypti (Linnaeus, 1762), principal vector de los virus del dengue, Zika y chikungunya, está aclimatado a zonas urbanas y su distribución sigue en aumento. Una de las herramientas para su control es el uso de insecticidas; sin embargo, algunas poblaciones se han vuelto resistentes a esos productos. La resistencia es una adaptación del mosquito que le permite lidiar con la presión impuesta por los insecticidas. No obstante, también puede tener costos ecológicos, al afectar otras características e inducir un lento desarrollo, reducción en la longevidad, disminución en la producción y eclosión de huevos. También puede afectar la interacción patógeno-insecto, lo que ocasiona un posible impacto negativo mayor en la salud humana.

Biografía del autor/a

Miguel Moreno García, Centro Regional de Control de Vectores “Panchimalco”, Servicios de Salud de Morelos (SSM)

Centro Regional de Control de Vectores “Panchimalco”, Servicios de Salud de Morelos (SSM)

Cassandra González Acosta, Servicios de Salud de Morelos (SSM)

Servicios de Salud de Morelos (SSM)

Héctor Barón Olivares, Servicios de Salud de Morelos (SSM)

Servicios de Salud de Morelos (SSM)

Fabián Correa Morales, Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE), Secretaría de Salud (SSA)

Centro Nacional de Programas Preventivos y Control de Enfermedades (Cenaprece), Secretaría de Salud (SSA)

Citas

Agnew, P., Berticat, C., Bedhomme, S., Sidobre, C. y Michalakis, Y. (2004). Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution, 58, 579-586. https://doi.org/10.1554/03-436

Alout, H. Djègbè, I., Chandre, F., Djogbènou, L. S., Dabirè, R. K., Corbel, V.y Cohuet A. (2014). Insecticide exposure impacts vector-parasite interactions in insecticide-resistant malaria vectors. Proceedings of the Royal Society B: Biological Sciences, 281, 20140389. https://doi.org/10.1098/rspb.2014.0389

Alout, H., Dabirè, R. K., Djogbènou, L. S., Abate, L., Corbel, V., Chandre, F. y Cohuet A. (2016). Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae. Scientific Reports, 6, 29755. https://doi.org/10.1038/srep29755

Arévalo-Cortés, A., Damania, A., Granada, Y., Zuluaga, S., Mejia, R. y Triana-Chávez, O. (2022). Association of midgut bacteria and their metabolic pathways with zika infection and insecticide resistance in colombian Aedes aegypti populations. Viruses, 14, 2197. https://doi.org/10.3390/v14102197

Belinato, T. A. y Martins, A. J. (2016). Insecticide Resistance and Fitness Cost. En: S. Trdan (ed.). Insecticides Resistance (pp. 243-261), InTech. https://doi.org/10.5772/61826

Belinato, T. A., Martins, A. J. y Valle, D. (2012). Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos. Memórias do Instituto Oswaldo Cruz, 107, 916-922. https://doi.org/10.1590/S0074-02762012000700013

Berticat, C., Rousset, F., Raymond, M., Berthomieu, A. y Weill, M. (2002). High Wolbachia density in insecticide-resistant mosquitoes. Proceedings of the Royal Society B: Biological Sciences, 269, 1413-1416. https://doi.org/10.1098/rspb.2002.2022

Brito, L. P., Linss, J. G. B., Lima-Camara, T. N., Belinato, T. A., Peixoto, A. A., Lima, J. B. P., Valle, D. y Martins, A. J. (2013). Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE, 8:e60878. https://doi.org/10.1371/journal.pone.0060878

Centers for Disease Control and Prevention (2020). Prevención de Picaduras de Mosquito. Cómo Protegerse de las Picaduras de Mosquito. Centers for Disease Control and Prevention, Department of Health and Human Services, USA. https://www.cdc.gov/mosquitoes/pdfs/MosquitoBitePreventionUS_ESP_508.pdf

Centro Nacional de Prevención y Control de Enfermedades (2020a). Guía Metodológica para la Nebulización Espacial UBV. 2ª ed. CENAPRECE, SSA, México. https://www.gob.mx/cms/uploads/attachment/file/598085/Guia_Metodologica_para_Nebulizacion_Espacial_UBV.pdf

Centro Nacional de Prevención y Control de Enfermedades (2020b). Guía Metodológica para el Rociado Domiciliario. 2ª ed. CENAPRECE, SSA, México. https://www.gob.mx/cms/uploads/attachment/file/598083/Guia_Metodologica_para_el_Rociado_Domiciliario.pdf

Centro Nacional de Prevención y Control de Enfermedades (2020c). Guía para la Determinación de la Susceptibilidad/Resistencia y Eficacia Biológica a Insecticidas. 2ª ed. CENAPRECE, SSA, México. https://www.gob.mx/cms/uploads/attachment/file/598093/Guia_para_la_Determinaci_n_de_la_SusceptibilidadResistencia_y_Eficacia_..._compr.pdf

Chareonviriyaphap, T., Bangs, M. J., Suwonkerd, W., Kongmee, M., Corbel, V. y Ngoen-Klan, R. (2013). Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasite & Vectors, 6, 280. https://doi.org/10.1186/1756-3305-6-280

Chen, T. Y., Smartt, C. T. y Shin, D. (2021). Permethrin resistance in Aedes aegypti affects aspects of vectorial capacity. Insects, 12, 71. https://doi.org/10.3390/insects12010071

Clements, A. N. (1992). The Biology of Mosquitoes: Development, Nutrition and Reproduction (Vol. 1). Chapman & Hall.

Contreras-Perera, Y., Ponce-García, G., Villanueva-Segura, K., López-Monroy, B., Rodríguez-Sánchez, I. P., Lenhart. A., Manrique-Saide, P. y Flores, A. E. (2020). Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasite & Vectors, 13, 224. https://doi.org/10.1186/s13071-020-04093-3

Devonshire, A. L. y G. D. Moores. (1982). A carboxylesterase with broad substrate specificity causes organophosphorous, carbamate and pyrethroid resistance in peach potato aphids (Myzus persicae). Pesticide Biochemistry and Physiology, 18, 235-246. https://doi.org/10.1016/0048-3575(82)90110-9

Deming, R., Manrique-Saide, P., Medina Barreiro, A., Cardeña, E. U. K., Che-Mendoza, A., Jones, B., Liebman, K., Vizcaíno, L.,Vázquez-Prokopec, G. y Lenhart, A. (2016). Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites & Vectors, 9, 1-10. https://doi.org/10.1186/s13071-016-1346-3

Ding, F., Fu, J., Jiang, D., Hao, M. y Lin, G. (2018). Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Tropica, 178, 155-162. https://doi.org/10.1016/j.actatropica.2017.11.020

Gan, S. J., Leong, Y. Q., bin Barhanuddin, M. F. H., Wong, S. T., Wong, S. F., Mak, J. W. y Ahmad, R. B. (2021). Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasites & Vectors, 14, 1-19. https://doi.org/10.1186/s13071-021-04785-4

Fondo de las Naciones Unidas para la Infancia (2016). Control del Vector Aedes aegypti y Medidas Preventivas en el Contexto del Zika. Nota técnica para UNICEF. https://www.unicef.org/lac/media/1381/file/PD%20Publicaci%C3%B3n%20Control%20del%20vector%20Aedes%20aegypti%20y%20medidas%20preventivas.pdf

Garrett-Jones, C. y Shidrawi, G. R. (1969). Malaria vectorial capacity of Anopheles gambiae. Bulletin of the World Health Organization, 40, 531-545. https://apps.who.int/iris/bitstream/handle/10665/267721/PMC2556109.pdf

George, P. J. E. y Ambrose, D. P. (2004). Impact of insecticides on the hemogram of Rhynocoris kumarii Ambrose and Livingstone (Hem., Reduviidae). Journal of Applied Entomology, 128, 600-604. https://doi.org/10.1111/j.1439-0418.2004.00896.x

Garland, T. (2014). Trade-offs. Current Biology, 24, R60-R61. https://doi.org/10.1016/j.cub.2013.11.036.

Hemingway, J., Hawkes, N. J, McCarroll, L. y Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653-665. https://doi.org/10.1016/j.ibmb.2004.03.018

Higgs, S. y Beaty, B. J. (2005). Natural cycles of vector-borne pathogens. En: Marquardt, W. C. (ed.). Biology of Disease Vectors (pp. 167-185). 2nd ed. Elsevier Academic Press.

Iwanaga, S. y Lee, B. L. (2005). Recent advances in the innate immunity of invertebrate animals. Journal of Biochemistry and Molecular Biology, 38, 128-150. https://doi.org/10.5483/BMBRep.2005.38.2.128

Kumar, S., Christophides, G. K., Cantera, R., Charles, B., Soo Han, Y., Meister, S., Dimopoulos, G., Kafatos, F. C. y Barillas-Mury, C. (2003). The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proceedings of the National Academy of Science USA, 100, 14139-14144. https://doi.org/10.1073/pnas.203626210

Kumar, S., Thomas, A., Samuel, T., Sahgal, A., Verma, A. y Pillai, M. K. (2009). Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L. Tropical Biomedicine, 26, 155-64. https://drive.google.com/file/d/0B75lcx0mfp2OTllBaGMzZ0xzNEE/view?pli=1&resourcekey=0-2PytjhDbQCIkdubhea9X1g

Kuri-Morales, P. A., Correa-Morales, F., González-Acosta, C., Moreno-García, M., Santos-Luna, R., Román-Pérez, S., Salazar-Penagos, F., Lombera-González, M., Sánchez-Tejeda, G. y González-Roldán, J. F. (2017). Insecticide susceptibility status in Mexican populations of Stegomyia aegypti (=Aedes aegypti): a nationwide assessment. Medical and Veterinary Entomology, 32, 162-174. https://doi.org/10.1111/mve.12281

Lowenberger, C. (2001). Innate immune response of Aedes aegypti. Insect Biochemistry and Molecular Biology, 31, 219-229. https://doi.org/10.1016/S0965-1748(00)00141-7

Machani, M. G., Ochomo, E., Zhong, D., Zhou, G., Wang, X., Githeko, A. K., Yan, G., y Afrane Y. A. (2020). Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Scientific Reports, 10, 19063. https://doi.org/10.1038/s41598-020-75865-1

McCarroll, L. y Hemingway, J. (2002). Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochemistry and Molecular Biology, 32, 1345-1351. https://doi.org/10.1016/s0965-1748(02)00097-8

Metz, H. C., Miller, A. K., You, J., Akorli, J., Avila, F. W., Buckner, E. A., Kane, P., Otoo, S., Ponlawat, A., Triana-Chávez, O., Williams, K. F. y McBride, C. S. (2023). Evolution of a mosquito’s hatching behavior to match its human-provided habitat. The American Naturalist, 201, 200-214. https://doi.org/10.1086/722481

Muktar, Y., Tamerat, N. y Shewafera, A. (2016). Aedes aegypti as a vector of flavivirus. Journal of Tropical Disease, 4, 2. https://doi.org/10.4172/2329-891X.1000223

Muturi, E. J., Ephantus, J., Costanzo, K., Kesavaraju, B. y Alto, B. W. (2011). Can pesticides and larval competition alter susceptibility of Aedes mosquitoes (Diptera: Culicidae) to arbovirus infection? Journal of Medical Entomology, 48, 429-436. https://doi.org/10.1603/ME10213

Oliveira, J. H. M., Gonçalves, R. L. S., Oliveira, G. A., Oliveira, P. L., Oliveira, M. F. y Barillas-Mury, C. (2011). Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection. Insect Biochemistry and Molecular Biology, 41, 349-355.https://doi.org/10.1016/j.ibmb.2011.02.001

Organización Mundial de la Salud (1975). Manual de Entomología Práctica del Paludismo. Parte II. Métodos y técnicas. OMS. https://apps.who.int/iris/bitstream/handle/10665/42481/WHO_OFFSET_13_(part2).pdf?sequence=2

Organización Mundial de la Salud (2012). Plan Mundial para la Gestión de la Resistencia a los Insecticidas en los Vectores del Paludismo. OMS. https://apps.who.int/iris/bitstream/handle/10665/44846/9789241564472_eng.pdf?sequence=1

Organización Mundial de la Salud (2017). Respuesta mundial para el control de vectores, 2017-2030. OMS. https://www.paho.org/es/documentos/respuesta-mundial-para-control-vectores-2017-2030-0

Organización Mundial de la Salud (2020). Enfermedades Transmitidas por Vectores. OMS. https://www.who.int/es/news-room/fact-sheets/detail/vector-borne-diseases

Otto, S. P. (2004). Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proceedings of the Royal Society B: Biological Sciences, 271, 705-14. https://doi.org/10.1098/rspb.2003.2635

Rodríguez-Cruz, R. (2002). Estrategias para el control del dengue y del Aedes aegypti en las Américas. Revista Cubana de Medicina Tropical, 54, 189-201. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-7602002000300004

Rivero, A., Vézilier, J., Weill, M., Read, A. F. y Gandon, S. (2010). Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathogens, 6, e1001000. https://doi.org/10.1371/journal.ppat.1001000

Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defences. Annual Review of Entomology, 50, 529-551. https://doi.org/10.1146/annurev.ento.50.071803.130420

Vera-Maloof, F. Z, Saavedra-Rodriguez, K., Penilla-Navarro, R. P., Rodríguez-Ramírez, A., Dzul, F., Manrique-Saide, P. y Black, W. C. (2020). Loss of pyrethroid resistance in newly established laboratory colonies of Aedes aegypti. PLoS Neglected Tropical Diseases, 14, e0007753. https://doi.org/10.1371/journal.pntd.0007753

Vontas, J., Blass, C., Koutsos, A. C., David, J.-P., Kafatos, F. C., Louis, C., Hemingway, J., Christophides, G. K. y Ranson H. (2005). Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Molecular Biology, 14, 509-521. https://doi:10.1111/j.1365-2583. 2005.00582.x

Webb Jr., J. L. A. (2016). Aedes aegypti suppression in the Americas: historical perspectives. The Lancet, 388, 556-557. https://doi.org/10.1016/s0140-6736(16)31225-9

Yahouédo, G. A., Chandre, F., Rossigno, M., Ginibre, C., Balabanidou, V., Mendez, N. G. A., Pigeon, O., Vontas, J. y Cornelie, S. (2017). Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Scientific Reports, 7, 11091. https://doi.org/10.1038/s41598-017-11357-z

Yamamura, K. (2021). Optimal rotation of insecticides to prevent the evolution of resistance in a structured environment. Population Ecology, 63, 190-203. https://doi.org/10.1002/1438-390X.12090

Zibaee, A. y Bandani, A. R. (2010). Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bulletin of Entomological Research, 100, 185-196. https://doi:10.1017/S0007485309990149

Ecología evolutiva de la resistencia a insecticidas en el mosquito Aedes (stegomyia) aegypti

Publicado

2023-10-11

Cómo citar

Moreno García, M., González Acosta, C., Barón Olivares, H., & Correa Morales, F. (2023). Ecología evolutiva de la resistencia a insecticidas en el mosquito Aedes (stegomyia) aegypti. Inventio, 19(47), 1–13. https://doi.org/10.30973/inventio/2023.19.47/1

Número

Sección

Artículos