Fluoruro en el agua: efectos en la salud y métodos de detección y remoción
DOI:
https://doi.org/10.30973/inventio/2024.20.52/9Palabras clave:
fluoruro, sensores, detección, remoción, límites permitidos, salud, aguaResumen
Es crucial conocer la concentración de fluoruro (F⁻) en las diferentes fuentes que afectan a los seres vivos debido a sus efectos positivos y negativos. El F⁻, uno de los componentes de la pasta de dientes, resulta beneficioso al prevenir las caries, el deterioro del esmalte dental y el proceso de remineralización. Su exceso puede causar daños a la salud y, en concentraciones muy elevadas, incluso la muerte. Este ion puede contaminar el agua y la cadena alimentaria, por lo que la detección y medición eficiente de su contenido en los consumibles es esencial. Se plantea el problema de las altas concentraciones de F⁻ y se analizan los métodos utilizados para su detección, cuantificación y remoción.
Citas
Alarcón-Herrera, M. T., Bundschuh, J., Nath, B., Nicolli, H. B., Gutiérrez, M., Reyes-Gómez, V. M., Núñez, D., Martín-Domínguez, I. R. y Sracek, O. (2013). Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. Journal of Hazardous Materials, 262, 960-969. https://doi.org/10.1016/j.jhazmat.2012.08.005
Alarcón-Herrera, M. T., Martin-Alarcón, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A. y Bundschuh, J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization. Science of the Total Environment, 698, 1-8. https://doi.org/10.1016/j.scitotenv.2019.134168
Apambire, W. B., Boyle, D. R. y Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environmental Geology, 33(1), 13-24. https://doi.org/10.1007/s002540050221
Black, C. B., Andrioletti, B., Try, A. C., Ruipérez, C. y Sessler, J. L. (1999). Dipyrrolylquinoxalines: efficient sensors for fluoride in organic solution. Journal of the American Chemical Society, 121(44), 10438-10439. https://doi.org/10.1021/ja992579a
Burciaga-Montemayor, N. G., Claudio-Rizo, J. A., Cano-Salazar, L. F., Martínez-Luévanos, A. y Vega-Sánchez, P. (2020). Compósitos en estado hidrogel con aplicación en la adsorción de metales pesados presentes en aguas residuales. TIP. Revista Especializada en Ciencias Químico-Biológicas, 23. https://doi.org/10.22201/fesz.23958723e.2020.0.211
Castañeda Villanueva, A. A. (2020). Increase in the concentration of fluorine compounds as indicator of the decrease in the dynamic level in groundwater in a population of western Mexico. Journal of Research in Environmental and Earth Sciences, 6(4), 55-65. https://www.questjournals.org/jrees/papers/vol6-issue4/G06045565.pdf
Chang, R. (2007). Chemistry. McGraw-Hill, 9a ed. https://archive.org/details/chemistry00raym/page/n1/mode/1up
Clark, M. B., Keels, M. A., Slayton, R. L., Braun, P. A., Fisher-Owens, S., Huff, Q. A., Karp, J. M., Rao Tate, A., Unkel, J. H. y Krol, D. (2020). Fluoride use in caries prevention in the primary care setting. Pediatrics, 146(6), 1-11. https://doi.org/10.1542/peds.2020-034637
Comisión Nacional del Agua (2022). Indicadores de la calidad del agua superficial y subterránea. Red Nacional de Medición de la Calidad del Agua (RENAMECA). SEMARNAT/CONAGUA/RENAMECA. https://files.conagua.gob.mx/Ica20/Contenido/Documentos/PresentaciondeIndicadoresdelaCalidaddelAgua.pdf
Committee on Fluoride in Drinking Water, Board on Environmental Studies and Toxicology y Division on Earth and Life Studies (2006). Fluoride in drinking water: a scientific review of EPA’s standards. The National Academies Press. https://www.actionpa.org/fluoride/nrc/NRC-2006.pdf
Cruz Cardoso, D. de la, Castillo Chaires, I., Arteaga Mejía, M., Cervantes Sandoval, A. y Pinelo Bolaños, P. (2013). Analysis of the concentration of fluoride in bottled water in different Mexican states. Revista Asociación Dental Mexicana, 70(2), 81-90. https://www.medigraphic.com/pdfs/adm/od-2013/od132g.pdf
Dirección General de Desarrollo Minero (2021). Perfil de mercado de la fluorita. Secretaría de Economía. https://www.gob.mx/cms/uploads/attachment/file/624810/9Perfil_Fluorita_2020__T_.pdf
García-Montiel, E., Zepeda-Mondragón, F., Morones-Esquivel, M. M., Ramírez-Aldaba, H., López-Serrano, P. M., Briseño-Reyes, J. y Montiel-Antuna, E. (2023). Probabilistic risk assessment of exposure to fluoride in drinking water in Victoria de Durango, Mexico. Sustainability, 15(19). https://doi.org/10.3390/su151914630
Ghosh, D. y Ghosh, S. (2020). Flouride and brain: a review. International Journal of Pharmaceutical Sciences and Research, 11(5), 2011-2017. https://doi.org/10.13040/IJPSR.0975-8232.11(5).2011-17
González-Horta, C., Ballinas-Casarrubias, L., Sánchez-Ramírez, B., Ishida, M. C., Barrera-Hernández, A., Gutiérrez-Torres, D., Zacarias, O. L., Saunders, R. J., Drobná, Z., Mendez, M. A., García-Vargas, G., Loomis, D., Stýblo, M. y Razo, L. M. del (2015). A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 12, 4587-4601. https://doi.org/10.3390/ijerph120504587
Gopu, B. P., Azevedo, L. B., Duckworth, R. M., Subramanian, M. K. P., John, S. y Zohoori, F. V. (2023). The relationship between fluoride exposure and cognitive outcomes from gestation to adulthood—a systematic review. International Journal of Environmental Research and Public Health, 20(1), 1-13. https://doi.org/10.3390/ijerph20010022
Gutiérrez, M., Espino Valdés, M. S., Alarcón-Herrera, M. T., Pinales-Munguía, A. y Silva-Hidalgo, H. (2021). Arsénico y flúor en agua subterránea de Chihuahua: su origen, enriquecimiento, y tratamientos posibles. Tecnociencia Chihuahua. Revista de Ciencia y Tecnología, 15(2), 1-14. https://doi.org/10.54167/tecnociencia.v15i2.828
Gutiérrez, M. y Alarcón-Herrera, M. T. (2022). Fluoruro en aguas subterráneas de la región centro-norte de México y su posible origen. Revista Internacional de Contaminación Ambiental, 38, 389-397. https://doi.org/10.20937/rica.54307
Hattab, F. N. (2020). An update on fluorides and fluorosis with reference to oral health status in the gulf region: review. Asian Journal of Dental Sciences, 3(1), 27-48. https://www.researchgate.net/publication/340581756
Hurtado, R. y Gardea-Torresdey, J. (2004). Environmental evaluation of fluoride in drinking water at “Los Altos de Jalisco,” in the Central Mexico Region. Journal of Toxicology and Environmental Health. Parte A, Temas Actuales, 67(20-22), 1741-1753. https://doi.org/10.1080/15287390490493448
Jaccaud, M., Faron, R., Devilliers, D. y Romano, R. (2000). Fluorine. Ullmann’s Encyclopedia of Industrial Chemistry II Fluorine. Wiley. https://doi.org/10.1002/14356007.a11_293
Jarquín-Yáñez, L., Mejía-Saavedra, J. de J., Molina-Frechero, N., Gaona, E., Rocha-Amador, D. O., López-Guzmán, O. D. y Bologna-Molina, R. (2015). Association between urine fluoride and dental fluorosis as a toxicity factor in a rural community in the state of San Luis Potosi. The Scientific World Journal, 2015(1), 1-5. https://doi.org/10.1155/2015/647184
Javier Pérez, R., Rubio Armendáriz, C., Gutiérrez Fernández, Á. J., Paz Montelongo, S. y Hardisson, A. (2020). Niveles de fluoruro en dentífricos y colutorios. Journal of Negative and No Positive Results, 5(5), 491-503. https://doi.org/10.19230/jonnpr.3326
Jiménez Ángeles, M. de J., Ruiz-Ramos, R. y Loera-Serna, S. (2023). Nanomateriales y su aplicación en la retención de fluoruros en sistemas acuosos. Elementos, 129, 35-39. https://elementos.buap.mx/post.php?id=756
Kiprono, P., Kiptoo, J., Nyawade, E. y Ngumba, E. (2023). Iron functionalized silica particles as an ingenious sorbent for removal of fluoride from water. Scientific Reports, 13(1), 1-13. https://doi.org/10.1038/s41598-023-34357-8
Kumar, R., Ali, S., Sandanayake, S., Islam, M. A., Ijumulana, J., Maity, J. P., Vithanage, M., Armienta, M. A., Sharma, P., Hamisi, R., Kimambo, V. y Bhattacharya, P. (2024). Fluoride as a global groundwater contaminant. En R. Naidu (ed.), Inorganic Contaminants and Radionuclides (pp. 319-350). Elsevier. https://doi.org/10.1016/B978-0-323-90400-1.00010-0
Mahlangu, O., Mamba, B. y Momba, M. (2012). Efficiency of Silver Impregnated Porous Pot (SIPP) filters for production of clean potable water. International Journal of Environmental Research and Public Health, 9(9), 3014-3029. https://doi.org/10.3390/ijerph9093014
Maity, S., Maity, A. C., Kumar Das, A., Roymahapatra, G., Goswami, S. y Mandal, T. K. (2022). Colorimetric and theoretical investigation of coumarin based chemosensor for selective detection of fluoride. Journal of Molecular Structure, 1264, 1-7. https://doi.org/10.1016/j.molstruc.2022.133228
Martínez-Prado, M. A., Pérez-López, M. E., Vicencio de la Rosa, M. G. y González-Nevarez, C. C. (2013). Concentration of Fluoride and Arsenic in Bottled Drinking Water in Durango City, Mexico. Journal of Environmental Protection, 4(12), 8-13. https://doi.org/10.4236/jep.2013.412a2002
Molina Frechero, N., Sánchez Pérez, L., Castañeda Castaneira, E., Oropeza Oropeza, A., Gaona, E., Salas Pacheco, J. y Bologna Molina, R. (2013). Drinking water fluoride levels for a city in northern Mexico (Durango) determined using a direct electrochemical method and their potential effects on oral health. The Scientific World Journal, 2013(1), 1-6. https://doi.org/10.1155/2013/186392
Morales-Arredondo, J. I., Armienta-Hernández, M. A., Lugo-Dorantes, A. E., Barrera-Arrazola, A. P., Flores-Ocampo, I. Z. y Flores-Vargas, R. (2022). Fluoride presence in drinking water along the southeastern part of El Bajío Guanajuatense, Guanajuato, Mexico: sources and health effects. Environmental Geochemistry and Health, 45(6), 3715-3742. https://doi.org/10.1007/s10653-022-01426-2
Morales de Ávila, H., Gutiérrez, M., Colmenero-Chacón, C. P., Júnez-Ferreira, H. E. y Esteller-Alberich, M. V. (2023). Upward trends and lithological and climatic controls of groundwater arsenic, fluoride, and nitrate in central Mexico. Minerals, 13(9), 1-12. https://doi.org/10.3390/min13091145
Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A. T., Tapia, J., Choquehuayta, F. E. A., Armienta, M. A., Ormachea, M., Joseph, E. y López, D. L. (2020). Arsenic in Latin America: a critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of the Total Environment, 716, 1-105. https://doi.org/10.1016/j.scitotenv.2019.135564
Mukherjee, S., Shah, M., Chaudhari, K., Jana, A., Sudhakar, C., Srikrishnarka, P., Islam, M. R., Philip, L. y Pradeep, T. (2020). Smartphone-based fluoride-specific sensor for rapid and affordable colorimetric detection and precise quantification at sub-ppm levels for field applications. ACS Omega, 5(39), 25253-25263. https://doi.org/10.1021/acsomega.0c03465
Navarro, O., González, J., Júnez-Ferreira, H. E., Bautista, C. F. y Cardona, A. (2017). Correlation of Arsenic and Fluoride in the Groundwater for Human Consumption in a Semiarid Region of Mexico. Procedia Engineering, 186, 333-340. https://doi.org/10.1016/j.proeng.2017.03.259
Ortega-Guerrero, M. A. (2009). Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México. Revista Mexicana de Ciencias Geológicas, 26(1), 143-161. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742009000100012&lng=es&tlng=
Ortiz Letechipia, J., González-Trinidad, J., Júnez-Ferreira, H. E., Bautista-Capetillo, C., Robles-Rovelo, C. O., Contreras Rodríguez, A. R. y Dávila-Hernández, S. (2022). Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid region of Mexico. Water, 14(4), 1-16. https://doi.org/10.3390/w14040519
Otal, E. H., Kim, M. L., Dietrich, S., Takada, R., Nakaya, S. y Kimura, M. (2021). Open-source portable device for the determination of fluoride in drinking water. ACS Sensors, 6(1), 259-266. https://doi.org/10.1021/acssensors.0c02273
Rahdar, A., Ahmadi, S., Fu, J. y Rahdar, S. (2019). Iron oxide nanoparticle preparation and its use for the removal of fluoride from aqueous solution: application of isotherm, kinetic, and thermodynamics. Desalination and Water Treatment, 137, 174-182. https://doi.org/10.5004/dwt.2019.23350
Rocha, R. A., Rojas, D., Clemente, M. J., Ruiz, A., Devesa, V. y Vélez, D. (2013). Quantification of fluoride in food by microwave acid digestion and fluoride ion-selective electrode. Journal of Agricultural and Food Chemistry, 61(45), 10708-10713. https://doi.org/10.1021/jf403728r
Sawangjang, B. y Takizawa, S. (2023). Re-evaluating fluoride intake from food and drinking water: effect of boiling and fluoride adsorption on food. Journal of Hazardous Materials, 443(parte A), 1-12. https://doi.org/10.1016/j.jhazmat.2022.130162
Scanlon, B. R., Stonestrom, D. A., Reedy, R. C., Leaney, F. W., Gates, J. y Cresswell, R. G. (2009). Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resources Research, 45(7), 1-17. https://doi.org/10.1029/2008WR006963
Skórka-Majewicz, M., Goschorska, M., Żwierełło, W., Baranowska-Bosiacka, I., Styburski, D., Kapczuk, P. y Gutowska, I. (2020). Effect of fluoride on endocrine tissues and their secretory functions – review. Chemosphere, 260, 1-13. https://doi.org/10.1016/j.chemosphere.2020.127565
Sosa-Soto, J., Padrón-Covarrubias, A. I., Márquez-Preciado, R., Ruiz-Rodríguez, S., Pozos-Guillén, A., Pedroza-Uribe, I. M., Bayardo-González, R. A. y Garrocho-Rangel, A. (2022). Molar incisor hypomineralization (MIH): prevalence and degree of severity in a Mexican pediatric population living in an endemic fluorosis area. Journal of Public Health Dentistry, 82(1), 3-10. https://doi.org/10.1111/jphd.12446
Taneja, P., Manjuladevi, V., Gupta, R. K. y Gupta, K. K. (2022). Ultrathin film of octadecylamine functionalized single-walled carbon nanotubes for selective fluoride ion sensing in aqueous medium. Nano Express, 4(4), 1-10. https://doi.org/10.1088/2632-959X/ad0fa7
US Department of Health & Human Services, Public Health Service y Agency for Toxic Substances and Disease Registry (1993). Toxicological profile for fluorides, hydrogen fluoride, and fluorine. US Department of Health & Human Services/Public Health Service/Agency for Toxic Substances and Disease Registry. https://books.google.com.mx/books?id=GU8Lj0_pWLsC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Valdez-Jiménez, L., Valdez-Jiménez, L. M., Marín-Barba, P. y Pérez-Vega, M. I. (2023). Correlation analysis of fluoride levels and cognitive test performances in the adult population exposed to water consumption with high concentrations of fluoride. Fluoride, 56(1), 2-8. http://www.fluorideresearch.online/epub/files/167.pdf
Vázquez-Bojórquez, C., López-Verdín, S., Villanueva-Arriaga, R., Castañeda-Castaneira, E., Juárez-López, M. L. A. y Molina-Frechero, N. (2022). Fluorides in water for consumption in northern and western Mexico. Revista Médica del Instituto Mexicano del Seguro Social, 60(2), 179-187. https://pubmed.ncbi.nlm.nih.gov/35759557/
Vélez-León, E., Rodas-Flores, M. J., González-Guzmán, M. A. y Cuenca-León, K. (2019). Análisis de la concentración de flúor en el agua de abastecimiento público del cantón Cuenca, como posible factor que contribuye al desarrollo de fluorosis dental. Analysis, 23(6), 1-9. https://doi.org/10.5281/zenodo.3910800
Vithanage, M. y Bhattacharya, P. (2015). Fluoride in the environment: sources, distribution and defluoridation. Environmental Chemistry Letters, 13(2), 131-147. https://doi.org/10.1007/s10311-015-0496-4
Wallace Walser III, J. (2021). Hidden dangers? An investigation of volcanic and environmental impacts on human health and life in historical Iceland. [Tesis de doctorado, University of Iceland]. https://opinvisindi.is/bitstream/handle/20.500.11815/2516/Walser_PhD_v2.pdf?sequence=3&isAllowed=y
World Health Organization (2023). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. WHO. https://www.who.int/publications/i/item/9789240045064
Yan, L., Zhang, B., Zong, Z., Zhou, W., Shuang, S. y Shi, L. (2023). Artificial intelligence-integrated smartphone-based handheld detection of fluoride ion by Al3+-triggered aggregation-induced red-emssion enhanced carbon dots. Journal of Colloid and Interface Science, 651, 59-67. https://doi.org/10.1016/j.jcis.2023.07.125
Zhou, J., Sun, D. y Wei, W. (2023). Necessity to pay attention to the effects of low fluoride on human health: an overview of skeletal and non-skeletal damages in epidemiologic investigations and laboratory studies. Biological Trace Element Research, 201(4), 1627-1638. https://doi.org/10.1007/s12011-022-03302-7

Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Nancy Lara Sánchez, Armando Ramírez Monroy, Maribel Arroyo Carranza

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Esta revista proporciona acceso abierto inmediato a su contenido, con base en el principio de ofrecer al público un acceso libre a las investigaciones para contribuir a un mayor intercambio global de conocimientos. Se distribuye bajo una licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional License.