Fluoruro en el agua: efectos en la salud y métodos de detección y remoción

Autores/as

DOI:

https://doi.org/10.30973/inventio/2024.20.52/9

Palabras clave:

fluoruro, sensores, detección, remoción, límites permitidos, salud, agua

Resumen

Es crucial conocer la concentración de fluoruro (F⁻) en las diferentes fuentes que afectan a los seres vivos debido a sus efectos positivos y negativos. El F⁻, uno de los componentes de la pasta de dientes, resulta beneficioso al prevenir las caries, el deterioro del esmalte dental y el proceso de remineralización. Su exceso puede causar daños a la salud y, en concentraciones muy elevadas, incluso la muerte. Este ion puede contaminar el agua y la cadena alimentaria, por lo que la detección y medición eficiente de su contenido en los consumibles es esencial. Se plantea el problema de las altas concentraciones de F⁻ y se analizan los métodos utilizados para su detección, cuantificación y remoción.

Biografía del autor/a

Nancy Lara Sánchez, Doctorado en Ciencias Químicas, Centro de Química (CQ), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP)

Doctorado en Ciencias Químicas, Centro de Química (CQ), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP)

Armando Ramírez Monroy, Centro de Química (CQ), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP)

Centro de Química (CQ), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP)

Maribel Arroyo Carranza, Centro de Química (CQ), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP)

Centro de Química (CQ), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP)

Citas

Alarcón-Herrera, M. T., Bundschuh, J., Nath, B., Nicolli, H. B., Gutiérrez, M., Reyes-Gómez, V. M., Núñez, D., Martín-Domínguez, I. R. y Sracek, O. (2013). Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. Journal of Hazardous Materials, 262, 960-969. https://doi.org/10.1016/j.jhazmat.2012.08.005

Alarcón-Herrera, M. T., Martin-Alarcón, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A. y Bundschuh, J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization. Science of the Total Environment, 698, 1-8. https://doi.org/10.1016/j.scitotenv.2019.134168

Apambire, W. B., Boyle, D. R. y Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environmental Geology, 33(1), 13-24. https://doi.org/10.1007/s002540050221

Black, C. B., Andrioletti, B., Try, A. C., Ruipérez, C. y Sessler, J. L. (1999). Dipyrrolylquinoxalines: efficient sensors for fluoride in organic solution. Journal of the American Chemical Society, 121(44), 10438-10439. https://doi.org/10.1021/ja992579a

Burciaga-Montemayor, N. G., Claudio-Rizo, J. A., Cano-Salazar, L. F., Martínez-Luévanos, A. y Vega-Sánchez, P. (2020). Compósitos en estado hidrogel con aplicación en la adsorción de metales pesados presentes en aguas residuales. TIP. Revista Especializada en Ciencias Químico-Biológicas, 23. https://doi.org/10.22201/fesz.23958723e.2020.0.211

Castañeda Villanueva, A. A. (2020). Increase in the concentration of fluorine compounds as indicator of the decrease in the dynamic level in groundwater in a population of western Mexico. Journal of Research in Environmental and Earth Sciences, 6(4), 55-65. https://www.questjournals.org/jrees/papers/vol6-issue4/G06045565.pdf

Chang, R. (2007). Chemistry. McGraw-Hill, 9a ed. https://archive.org/details/chemistry00raym/page/n1/mode/1up

Clark, M. B., Keels, M. A., Slayton, R. L., Braun, P. A., Fisher-Owens, S., Huff, Q. A., Karp, J. M., Rao Tate, A., Unkel, J. H. y Krol, D. (2020). Fluoride use in caries prevention in the primary care setting. Pediatrics, 146(6), 1-11. https://doi.org/10.1542/peds.2020-034637

Comisión Nacional del Agua (2022). Indicadores de la calidad del agua superficial y subterránea. Red Nacional de Medición de la Calidad del Agua (RENAMECA). SEMARNAT/CONAGUA/RENAMECA. https://files.conagua.gob.mx/Ica20/Contenido/Documentos/PresentaciondeIndicadoresdelaCalidaddelAgua.pdf

Committee on Fluoride in Drinking Water, Board on Environmental Studies and Toxicology y Division on Earth and Life Studies (2006). Fluoride in drinking water: a scientific review of EPA’s standards. The National Academies Press. https://www.actionpa.org/fluoride/nrc/NRC-2006.pdf

Cruz Cardoso, D. de la, Castillo Chaires, I., Arteaga Mejía, M., Cervantes Sandoval, A. y Pinelo Bolaños, P. (2013). Analysis of the concentration of fluoride in bottled water in different Mexican states. Revista Asociación Dental Mexicana, 70(2), 81-90. https://www.medigraphic.com/pdfs/adm/od-2013/od132g.pdf

Dirección General de Desarrollo Minero (2021). Perfil de mercado de la fluorita. Secretaría de Economía. https://www.gob.mx/cms/uploads/attachment/file/624810/9Perfil_Fluorita_2020__T_.pdf

García-Montiel, E., Zepeda-Mondragón, F., Morones-Esquivel, M. M., Ramírez-Aldaba, H., López-Serrano, P. M., Briseño-Reyes, J. y Montiel-Antuna, E. (2023). Probabilistic risk assessment of exposure to fluoride in drinking water in Victoria de Durango, Mexico. Sustainability, 15(19). https://doi.org/10.3390/su151914630

Ghosh, D. y Ghosh, S. (2020). Flouride and brain: a review. International Journal of Pharmaceutical Sciences and Research, 11(5), 2011-2017. https://doi.org/10.13040/IJPSR.0975-8232.11(5).2011-17

González-Horta, C., Ballinas-Casarrubias, L., Sánchez-Ramírez, B., Ishida, M. C., Barrera-Hernández, A., Gutiérrez-Torres, D., Zacarias, O. L., Saunders, R. J., Drobná, Z., Mendez, M. A., García-Vargas, G., Loomis, D., Stýblo, M. y Razo, L. M. del (2015). A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 12, 4587-4601. https://doi.org/10.3390/ijerph120504587

Gopu, B. P., Azevedo, L. B., Duckworth, R. M., Subramanian, M. K. P., John, S. y Zohoori, F. V. (2023). The relationship between fluoride exposure and cognitive outcomes from gestation to adulthood—a systematic review. International Journal of Environmental Research and Public Health, 20(1), 1-13. https://doi.org/10.3390/ijerph20010022

Gutiérrez, M., Espino Valdés, M. S., Alarcón-Herrera, M. T., Pinales-Munguía, A. y Silva-Hidalgo, H. (2021). Arsénico y flúor en agua subterránea de Chihuahua: su origen, enriquecimiento, y tratamientos posibles. Tecnociencia Chihuahua. Revista de Ciencia y Tecnología, 15(2), 1-14. https://doi.org/10.54167/tecnociencia.v15i2.828

Gutiérrez, M. y Alarcón-Herrera, M. T. (2022). Fluoruro en aguas subterráneas de la región centro-norte de México y su posible origen. Revista Internacional de Contaminación Ambiental, 38, 389-397. https://doi.org/10.20937/rica.54307

Hattab, F. N. (2020). An update on fluorides and fluorosis with reference to oral health status in the gulf region: review. Asian Journal of Dental Sciences, 3(1), 27-48. https://www.researchgate.net/publication/340581756

Hurtado, R. y Gardea-Torresdey, J. (2004). Environmental evaluation of fluoride in drinking water at “Los Altos de Jalisco,” in the Central Mexico Region. Journal of Toxicology and Environmental Health. Parte A, Temas Actuales, 67(20-22), 1741-1753. https://doi.org/10.1080/15287390490493448

Jaccaud, M., Faron, R., Devilliers, D. y Romano, R. (2000). Fluorine. Ullmann’s Encyclopedia of Industrial Chemistry II Fluorine. Wiley. https://doi.org/10.1002/14356007.a11_293

Jarquín-Yáñez, L., Mejía-Saavedra, J. de J., Molina-Frechero, N., Gaona, E., Rocha-Amador, D. O., López-Guzmán, O. D. y Bologna-Molina, R. (2015). Association between urine fluoride and dental fluorosis as a toxicity factor in a rural community in the state of San Luis Potosi. The Scientific World Journal, 2015(1), 1-5. https://doi.org/10.1155/2015/647184

Javier Pérez, R., Rubio Armendáriz, C., Gutiérrez Fernández, Á. J., Paz Montelongo, S. y Hardisson, A. (2020). Niveles de fluoruro en dentífricos y colutorios. Journal of Negative and No Positive Results, 5(5), 491-503. https://doi.org/10.19230/jonnpr.3326

Jiménez Ángeles, M. de J., Ruiz-Ramos, R. y Loera-Serna, S. (2023). Nanomateriales y su aplicación en la retención de fluoruros en sistemas acuosos. Elementos, 129, 35-39. https://elementos.buap.mx/post.php?id=756

Kiprono, P., Kiptoo, J., Nyawade, E. y Ngumba, E. (2023). Iron functionalized silica particles as an ingenious sorbent for removal of fluoride from water. Scientific Reports, 13(1), 1-13. https://doi.org/10.1038/s41598-023-34357-8

Kumar, R., Ali, S., Sandanayake, S., Islam, M. A., Ijumulana, J., Maity, J. P., Vithanage, M., Armienta, M. A., Sharma, P., Hamisi, R., Kimambo, V. y Bhattacharya, P. (2024). Fluoride as a global groundwater contaminant. En R. Naidu (ed.), Inorganic Contaminants and Radionuclides (pp. 319-350). Elsevier. https://doi.org/10.1016/B978-0-323-90400-1.00010-0

Mahlangu, O., Mamba, B. y Momba, M. (2012). Efficiency of Silver Impregnated Porous Pot (SIPP) filters for production of clean potable water. International Journal of Environmental Research and Public Health, 9(9), 3014-3029. https://doi.org/10.3390/ijerph9093014

Maity, S., Maity, A. C., Kumar Das, A., Roymahapatra, G., Goswami, S. y Mandal, T. K. (2022). Colorimetric and theoretical investigation of coumarin based chemosensor for selective detection of fluoride. Journal of Molecular Structure, 1264, 1-7. https://doi.org/10.1016/j.molstruc.2022.133228

Martínez-Prado, M. A., Pérez-López, M. E., Vicencio de la Rosa, M. G. y González-Nevarez, C. C. (2013). Concentration of Fluoride and Arsenic in Bottled Drinking Water in Durango City, Mexico. Journal of Environmental Protection, 4(12), 8-13. https://doi.org/10.4236/jep.2013.412a2002

Molina Frechero, N., Sánchez Pérez, L., Castañeda Castaneira, E., Oropeza Oropeza, A., Gaona, E., Salas Pacheco, J. y Bologna Molina, R. (2013). Drinking water fluoride levels for a city in northern Mexico (Durango) determined using a direct electrochemical method and their potential effects on oral health. The Scientific World Journal, 2013(1), 1-6. https://doi.org/10.1155/2013/186392

Morales-Arredondo, J. I., Armienta-Hernández, M. A., Lugo-Dorantes, A. E., Barrera-Arrazola, A. P., Flores-Ocampo, I. Z. y Flores-Vargas, R. (2022). Fluoride presence in drinking water along the southeastern part of El Bajío Guanajuatense, Guanajuato, Mexico: sources and health effects. Environmental Geochemistry and Health, 45(6), 3715-3742. https://doi.org/10.1007/s10653-022-01426-2

Morales de Ávila, H., Gutiérrez, M., Colmenero-Chacón, C. P., Júnez-Ferreira, H. E. y Esteller-Alberich, M. V. (2023). Upward trends and lithological and climatic controls of groundwater arsenic, fluoride, and nitrate in central Mexico. Minerals, 13(9), 1-12. https://doi.org/10.3390/min13091145

Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A. T., Tapia, J., Choquehuayta, F. E. A., Armienta, M. A., Ormachea, M., Joseph, E. y López, D. L. (2020). Arsenic in Latin America: a critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of the Total Environment, 716, 1-105. https://doi.org/10.1016/j.scitotenv.2019.135564

Mukherjee, S., Shah, M., Chaudhari, K., Jana, A., Sudhakar, C., Srikrishnarka, P., Islam, M. R., Philip, L. y Pradeep, T. (2020). Smartphone-based fluoride-specific sensor for rapid and affordable colorimetric detection and precise quantification at sub-ppm levels for field applications. ACS Omega, 5(39), 25253-25263. https://doi.org/10.1021/acsomega.0c03465

Navarro, O., González, J., Júnez-Ferreira, H. E., Bautista, C. F. y Cardona, A. (2017). Correlation of Arsenic and Fluoride in the Groundwater for Human Consumption in a Semiarid Region of Mexico. Procedia Engineering, 186, 333-340. https://doi.org/10.1016/j.proeng.2017.03.259

Ortega-Guerrero, M. A. (2009). Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México. Revista Mexicana de Ciencias Geológicas, 26(1), 143-161. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742009000100012&lng=es&tlng=

Ortiz Letechipia, J., González-Trinidad, J., Júnez-Ferreira, H. E., Bautista-Capetillo, C., Robles-Rovelo, C. O., Contreras Rodríguez, A. R. y Dávila-Hernández, S. (2022). Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid region of Mexico. Water, 14(4), 1-16. https://doi.org/10.3390/w14040519

Otal, E. H., Kim, M. L., Dietrich, S., Takada, R., Nakaya, S. y Kimura, M. (2021). Open-source portable device for the determination of fluoride in drinking water. ACS Sensors, 6(1), 259-266. https://doi.org/10.1021/acssensors.0c02273

Rahdar, A., Ahmadi, S., Fu, J. y Rahdar, S. (2019). Iron oxide nanoparticle preparation and its use for the removal of fluoride from aqueous solution: application of isotherm, kinetic, and thermodynamics. Desalination and Water Treatment, 137, 174-182. https://doi.org/10.5004/dwt.2019.23350

Rocha, R. A., Rojas, D., Clemente, M. J., Ruiz, A., Devesa, V. y Vélez, D. (2013). Quantification of fluoride in food by microwave acid digestion and fluoride ion-selective electrode. Journal of Agricultural and Food Chemistry, 61(45), 10708-10713. https://doi.org/10.1021/jf403728r

Sawangjang, B. y Takizawa, S. (2023). Re-evaluating fluoride intake from food and drinking water: effect of boiling and fluoride adsorption on food. Journal of Hazardous Materials, 443(parte A), 1-12. https://doi.org/10.1016/j.jhazmat.2022.130162

Scanlon, B. R., Stonestrom, D. A., Reedy, R. C., Leaney, F. W., Gates, J. y Cresswell, R. G. (2009). Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resources Research, 45(7), 1-17. https://doi.org/10.1029/2008WR006963

Skórka-Majewicz, M., Goschorska, M., Żwierełło, W., Baranowska-Bosiacka, I., Styburski, D., Kapczuk, P. y Gutowska, I. (2020). Effect of fluoride on endocrine tissues and their secretory functions – review. Chemosphere, 260, 1-13. https://doi.org/10.1016/j.chemosphere.2020.127565

Sosa-Soto, J., Padrón-Covarrubias, A. I., Márquez-Preciado, R., Ruiz-Rodríguez, S., Pozos-Guillén, A., Pedroza-Uribe, I. M., Bayardo-González, R. A. y Garrocho-Rangel, A. (2022). Molar incisor hypomineralization (MIH): prevalence and degree of severity in a Mexican pediatric population living in an endemic fluorosis area. Journal of Public Health Dentistry, 82(1), 3-10. https://doi.org/10.1111/jphd.12446

Taneja, P., Manjuladevi, V., Gupta, R. K. y Gupta, K. K. (2022). Ultrathin film of octadecylamine functionalized single-walled carbon nanotubes for selective fluoride ion sensing in aqueous medium. Nano Express, 4(4), 1-10. https://doi.org/10.1088/2632-959X/ad0fa7

US Department of Health & Human Services, Public Health Service y Agency for Toxic Substances and Disease Registry (1993). Toxicological profile for fluorides, hydrogen fluoride, and fluorine. US Department of Health & Human Services/Public Health Service/Agency for Toxic Substances and Disease Registry. https://books.google.com.mx/books?id=GU8Lj0_pWLsC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Valdez-Jiménez, L., Valdez-Jiménez, L. M., Marín-Barba, P. y Pérez-Vega, M. I. (2023). Correlation analysis of fluoride levels and cognitive test performances in the adult population exposed to water consumption with high concentrations of fluoride. Fluoride, 56(1), 2-8. http://www.fluorideresearch.online/epub/files/167.pdf

Vázquez-Bojórquez, C., López-Verdín, S., Villanueva-Arriaga, R., Castañeda-Castaneira, E., Juárez-López, M. L. A. y Molina-Frechero, N. (2022). Fluorides in water for consumption in northern and western Mexico. Revista Médica del Instituto Mexicano del Seguro Social, 60(2), 179-187. https://pubmed.ncbi.nlm.nih.gov/35759557/

Vélez-León, E., Rodas-Flores, M. J., González-Guzmán, M. A. y Cuenca-León, K. (2019). Análisis de la concentración de flúor en el agua de abastecimiento público del cantón Cuenca, como posible factor que contribuye al desarrollo de fluorosis dental. Analysis, 23(6), 1-9. https://doi.org/10.5281/zenodo.3910800

Vithanage, M. y Bhattacharya, P. (2015). Fluoride in the environment: sources, distribution and defluoridation. Environmental Chemistry Letters, 13(2), 131-147. https://doi.org/10.1007/s10311-015-0496-4

Wallace Walser III, J. (2021). Hidden dangers? An investigation of volcanic and environmental impacts on human health and life in historical Iceland. [Tesis de doctorado, University of Iceland]. https://opinvisindi.is/bitstream/handle/20.500.11815/2516/Walser_PhD_v2.pdf?sequence=3&isAllowed=y

World Health Organization (2023). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. WHO. https://www.who.int/publications/i/item/9789240045064

Yan, L., Zhang, B., Zong, Z., Zhou, W., Shuang, S. y Shi, L. (2023). Artificial intelligence-integrated smartphone-based handheld detection of fluoride ion by Al3+-triggered aggregation-induced red-emssion enhanced carbon dots. Journal of Colloid and Interface Science, 651, 59-67. https://doi.org/10.1016/j.jcis.2023.07.125

Zhou, J., Sun, D. y Wei, W. (2023). Necessity to pay attention to the effects of low fluoride on human health: an overview of skeletal and non-skeletal damages in epidemiologic investigations and laboratory studies. Biological Trace Element Research, 201(4), 1627-1638. https://doi.org/10.1007/s12011-022-03302-7

Fluoruro en el agua: efectos en la salud y métodos de detección y remoción

Descargas

Publicado

2025-03-08

Cómo citar

Lara Sánchez, N., Ramírez Monroy, A. ., & Arroyo Carranza, M. . (2025). Fluoruro en el agua: efectos en la salud y métodos de detección y remoción. Inventio, 1–19. https://doi.org/10.30973/inventio/2024.20.52/9

Número

Sección

Artículos