ARN mensajero (mRNA), una molécula con potencial aplicación terapéutica y preventiva
DOI:
https://doi.org/10.30973/inventio/2022.18.44/8Palabras clave:
mRNA, Vacunas, Enfermedades crónicas, inmunización, tratamiento novedosoResumen
Los ácidos nucleicos (ADN y ARN) tienen la importante función de almacenar, expresar y transmitir la información genética de los seres vivos. El ADN actúa como "repositorio" de la información, en el núcleo de las células, y el ARN mensajero (mRNA) transmite esa información al sitio de síntesis. Esta propiedad permite utilizar al mRNA como agente terapéutico o para la generación de inmunidad contra organismos patógenos. En particular es interesante el diseño de vacunas basadas en mRNA que se han probado con éxito contra el covid-19, además del uso del mRNA contra enfermedades no infecciosas, entre ellas la diabetes tipo 1, la hemofilia, el asma y ciertos tipos de cáncer, incluyendo el melanoma. Las posibilidades terapéuticas del mRNA son muy amplias.
Citas
Alberer, M., Gnad-Vogt, U., Hong, H. S., Mehr, K. T., Backert, L., Finak, G., Gottardo, R., Bica, M. A., Garofano, A., Koch, S. D., Fotin-Mleczek, M., Hoerr, I., Clemens, R. y Von Sonnenburg, F. (2017). Safety and immunogenicity of a mrna rabies vaccine in healthy adults: an openlabel, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet, 390(10101), 1511-1520. https://doi.org/10.1016/S0140-6736(17)31665-3
Aldrich, C., Leroux-Roels, I., Huang, K. B., Bica, M. A., Loeliger, E., Schoenborn-Kellenberger, O., Walz, L., Leroux-Roels, G., Von Sonnenburg, F. y Oostvogels, L. (2021). Proof-ofconcept of a low-dose unmodified mrna-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine, 39(8), 1310-1318. https://doi.org/10.1016/j.vaccine.2020.12.070
An, D., Schneller, J. L., Frassetto, A., Liang, S., Zhu, X., Park, J. S., Theisen, M., Hong, S. J., Zhou, J., Rajendran, R., Levy, B., Howell, R., Besin, G., Presnyak, V., Sabnis, S., Murphy-Benenato, K. E., Kumarasinghe, E. S., Salerno, T., Mihai, C., Lukacs, C. M., Chandler, R. J., Guey, L. T., Venditti, C. P. y Martini, P. G. V. (2017). Systemic messenger rna therapy as a treatment for methylmalonic acidemia. Cell Reports, 21(12), 3548-3558. https://doi.org/10.1016/j.celrep.2017.11.081
Andries, O., Mc Cafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., Kitada, T. (2015). N1-methylpseudouridine-incorporated mrna outperforms pseudouridine-incorporated mrna by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release, 217, 337-44. https://doi.org/10.1016/j.jconrel.2015.08.051
Asrani, K. H., Cheng, L., Cheng, C. J. y Subramanian, R. R. (2018). Arginase I mrna therapy. A novel approach to rescue arginase 1 enzyme deficiency. rna Biology, 15(7), 914-922. https://doi.org/10.1080/15476286.2018.1475178
August, A., Attarwala, H. Z., Himansu, S., Kalidindi, S., Lu, S., Pajon, R., Han, S., Lecerf, J. M., Tomassini, J. E., Hard, M., Ptaszek, L. M., Crowe, J. E. y Zaks, T. (2021). A phase 1 trial of lipid-encapsulated mrna encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nature Medicine, 27(12), 2224-2233. https://doi.org/10.1038/s41591-021-01573-6
Bahl, K., Senn, J. J., Yuzhakov, O., Bulychev, A., Brito, L. A., Hassett, K. J., Laska, M. E., Smith, M., Almarsson, Ö., Thompson, J., Ribeiro, A. M., Watson, M., Zaks, T. y Ciaramella, G. (2017). Preclinical and clinical demonstration of immunogenicity by mrna vaccines against h10n8 and h7n9 influenza viruses. Molecular Therapy, 25(6), 1316-1327. https://doi.org/10.1016/j.ymthe.2017.03.035
Benteyn, D., Heirman, C., Bonehill, A., Thielemans, K. y Breckpot, K. (2015). mrna-based dendritic cell vaccines. Expert Review of Vaccines, 14(2), 161-176. https://doi.org/10.1586/14760584.2014.957684
Boczkowski, D., Nair, S. K., Snyder, D. y Gilboa, E. (1996). Dendritic cells pulsed with rna are potent antigen-presenting cells in vitro and in vivo. Journal of Experimental Medicine, 184(2), 465-472. https://doi.org/10.1084/jem.184.2.465
Bogers, W. M., Oostermeijer, H., Mooij, P., Koopman, G., Verschoor, E. J., Davis, D., Ulmer, J. B., Brito, L. A., Cu, Y., Banerjee, K., Otten, G. R., Burke, B., Dey, A., Heeney, J. L., Shen, X., Tomaras, G. D., Labranche, C., Montefiori, D. C., Liao, H. X., Haynes, B., Geall, A. J. y Barnett, S. W. (2015). Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying rna vaccine expressing hiv type 1 envelope with a cationic nanoemulsion. The Journal of Infectious Diseases, 211(6), 947-955. https://doi.org/10.1093/infdis/jiu522
Creusot, R. J., Chang, P., Healey, D. G., Tcherepanova, I. Y., Nicolette, C. A. y Fathman, C. G. (2010). A short pulse of il-4 delivered by dcs electroporated with modified mrna can both prevent and treat autoimmune diabetes in nod mice. Molecular Therapy, 18(12), 2112-20. https://doi.org/10.1038/mt.2010.146
DeRosa, F., Guild, B., Karve, S., Smith, L., Love, K., Dorkin, J. R., Kauffman, K. J., Zhang, J., Yahalom, B., Anderson, D. G. y Heartlein, M. W. (2016). Therapeutic efficacy in a hemophilia B model using a biosynthetic mrna liver depot system. Gene Therapy, 23, 699-707. https://doi.org/10.1038/gt.2016.46
Hassett, K. J., Benenato, K. E., Jacquinet, E., Lee, A., Woods, A., Yuzhakov, O., Himansu, S., Deterling, J., Geilich, B. M., Ketova, T., Milhai, C., Lyyn, A., McFyden, I., Moore, M. J., Seen, J. J., Stanton, M. G., Almarsson, Ö., Ciaramella, G. y Brito, L. A. (2019). Optimization of lipid nanoparticles for intramuscular administration of mrna vaccines. Molecular Therapy Nucleic Acids, 15, 1-11. https://doi.org/10.1016/j.omtn.2019.01.013
Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M. A., Lallas, C. D., Dahm, P., Niedzwiecki, D., Gilboa, E. y Vieweg, J. (2002). Autologous dendritic cells transfected with prostatespecific antigen rna stimulate ctl responses against metastatic prostate tumors. The Journal of Clinical Investigation, 109(3), 409-17. https://doi.org/10.1172/jci14364
Hornung, V., Barchet, W., Schlee, M. y Hartmann, G. (2008). rna recognition via tlr7 and tlr8. Handbook of Experimental Pharmacology, 183, 71-86. https://doi.org/10.1007/978-3-540-72167-3_4
Jiang, L., Berraondo, P., Jericó, D., Guey, L. T., Sampedro, A., Frassetto, A., Benenato, K. E., Burke, K., Santamaría, E., Alegre, M., Pejenaute, A., Kalariya, M., Butcher, W., Park, J. S., Zhu, X., Sabnis, S., Kumarasinghe, E. S., Salerno, T., Kenney, M.,... y Fontanellas, A. (2018). Systemic messenger rna as an etiological treatment for acute intermittent porphyria. Nature Medicine, 24(12), 1899-1909. https://doi.org/10.1038/s41591-018-0199-z
Jirikowski, G. F., Sanna, P. P., Maciejewski-Lenoir, D. y Bloom, F. E. (1992). Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mrna. Science, 255(5047), 996-998. https://doi.org/10.1126/science.1546298
Kallen, K.-J. y Theß, A. (2014). A development that may evolve into a revolution in medicine: mrna as the basis for novel, nucleotide-based vaccines and drugs. Therapeutic Advances in Vaccines and Immunotherapy 2(1), 10-31. https://doi.org/10.1177/2051013613508729
Karikó, K., Ni, H., Capodici, J., Lamphier, M. y Weissman, D. (2004). mrna is an endogenous ligand for Toll-like receptor 3. Journal of Biological Chemistry, 279(13), 12542-12550. https://doi.org/10.1074/jbc.m310175200
Karikó, K., Buckstein, M., Ni, H. y Weissman, D. (2005). Suppression of rna recognition by Tolllike receptors: The impact of nucleoside modification and the evolutionary origin of rna. Immunity, 23(2), 165-175. https://doi.org/10.1016/j.immuni.2005.06.008
Karikó, K., Muramatsu, H., Keller, J. M. y Weissman, D. (2012). Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mrna encoding erythropoietin. Molecular Therapy, 20(5), 948-953. https://doi.org/10.1038/mt.2012.7
Koido, S., Kashiwaba, M., Chen, D., Gendler, S., Kufe, D. y Gong, J. (2000). Induction of antitumor immunity by vaccination of dendritic cells transfected with muc1 rna. The Journal of Immunology, 165, 5713-5719. https://doi.org/10.4049/jimmunol.165.10.5713
Lamb, Y. N. (2021). bnt162b2 mrna covid-19 vaccine: first approval. Drugs, 81, 495-501. https://doi.org/10.1007/s40265-021-01480-7
Levy, O., Zhao, W., Mortensen, L. J., Leblanc, S., Tsang, K., Fu, M., Phillips, J. A., Sagar, V., Anandakumaran, P., Ngai, J., Cui, C. H., Eimon, P., Angel, M., Lin, C. P., Yanik, M. F. y Karp, J. M. (2013). mrna-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood, 122(14), e23-e32. https://doi.org/10.1182/blood-2013-04-495119
Luo, F., Zheng, L., Hu, Y., Liu, S., Wang, Y., Xiong, Z., Hu, X. y Tan, F. (2017). Induction of protective immunity against Toxoplasma gondii in mice by ucleoside triphosphate hydrolase-ii (ntpase-ii) self-amplifying rna vaccine encapsulated in lipid nanoparticle (lnp). Frontiers in Microbiology, 8, 605. https://doi.org/10.3389/fmicb.2017.00605
Mahase, E. (2020). covid-19: Moderna applies for us and eu approval as vaccine trial reports 94.1% efficacy. bml, 371, m4709. https://doi.org/10.1136/bmj.m4709
Mallory, K. L., Taylor, J. A., Zou, X., Waghela, I. N., Schneider, C. G., Sibilo, M. Q., Punde, N. M., Perazzo, L. C., Savransky, T., Sedegah, M., Dutta, S., Janse, C. J., Pardi, N., Lin, P. J. C., Tam, Y. K., Weissman, D. y Angov, E. (2021). Messenger rna expressing Pfcsp induces functional, protective immune responses against malaria in mice. npj Vaccines, 6(84), 1-12. https://doi.org/10.1038/s41541-021-00345-0
Mays, L. E., Ammon-Treiber, S., Mothes, B., Alkhaled, M., Rottenberger, J., Müller-Hermelink, E. S., Grimm, M., Mezger, M., Beer-Hammer, S., Von Stebut, E., Rieber, N., Nürnberg, B., Schwab, M., Handgretinger, R., Idzko, M., Hartl, D. y Kormann, M. S. (2013). Modified Foxp3 mrna protects against asthma through an il-10-dependent mechanism. The Journal of Clinical Investigation, 123(3), 1216-1228. https://doi.org/10.1172/jci65351
Medina-Magües, L. G., Gergen, J., Jasny, E., Petsch, B., Lopera-Madrid, J., Medina-Magües, E. S., Salas-Quinchucua, C. y Osorio, J. E. (2021). mrna vaccine rotects against Zika virus. Vaccines, 9(12), 1464. https://doi.org/10.3390/vaccines9121464
Meyer, M., Huang, E., Yuzhakov, O., Ramanathan, P., Ciaramella, G. y Bukreyev, A. (2018). Modified mrna-based vaccines elicit robust immune responses and protect Guinea pigs from Ebola virus disease. The Journal of Infectious Diseases, 217(3), 451-455. https://doi.org/10.1093/infdis/jix592
Okumura, K., Nakase, M., Inui, M., Nakamura, S., Watanabe, Y. y Tagawa, T. (2008). Bax mrna therapy using cationic liposomes for human malignant melanoma. The Journal of Gene Medicine, 10(8), 910-917. https://doi.org/10.1002/jgm.1214
Pollard, C., Rejman, J., De Haes, W., Verrier, B., Van Gulck, E., Naessens, T., De Smedt, S., Bogaert, P., Grooten, J., Vanham, G. y De Koker, S. (2013). Type I ifn counteracts the induction of antigen-specific immune responses by lipid-based delivery of mrna vaccines. Molecular Therapy, 21(1), 251-259. https://doi.org/10.1038/mt.2012.202
Robinson, E., MacDonald, K. D., Slaughter, K., McKinney, M., Patel, S., Sun, C. y Sahay, G. (2018). Lipid nanoparticle-delivered chemically modified mifn restores chloride secretion in cystic fibrosis. Molecular Therapy, 26(8), 2034-2046. https://doi.org/10.1016/j.ymthe.2018.05.014
Sahin, U., Karikó, K. y Türeci, Ö. (2014). mrna-based therapeutics: developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759-780. https://doi.org/10.1038/nrd4278
Wang, Y., Zhang, Z., Luo, J., Han, X., Wei, Y. y Wei, X. (2021). mrna vaccine: a potential therapeutic strategy. Molecular Cancer, 20, 33. https://doi.org/10.1186/s12943-021-01311-z
Weissman, D. (2015). mrna transcript therapy. Expert Review of Vaccines, 14(2), 265-281. https://doi.org/10.1586/14760584.2015.973859
Weng, Y., Li, C., Yang, T., Hu, B., Zhang, M., Guo, S., Xiao, H., Liang, X. J. y Huang, Y. (2020). The challenge and prospect of mrna therapeutics landscape. Biotechnology Advances, 40, 107534. https://doi.org/10.1016/j.biotechadv.2020.107534
Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A. y Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247(4949 pt. 1), 1465-1468. https://doi.org/10.1126/science.1690918
Zangi, L., Lui, K. O., Von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., Später, D., Xu, H., Tabebordbar, M., Gorbatov, R., Sena, B., Nahrendorf, M., Briscoe, D. M., Li, R. A., Wagers, A. J., Rossi, D. J., Pu, W. T. y Chien, K. R. (2013). Modified mrna directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 31(10), 898-907. https://doi.org/10.1038/nbt.2682
Zimmermann, O., Homann, J. M., Bangert, A., Müller, A. M., Hristov, G., Goeser, S., Wiehe, J. M., Zittrich, S., Rottbauer, W., Torzewski, J., Pfitzer, G., Katus, H. A. y Kaya, Z. (2012). Successful use of mrna-nucleofection for overexpression of interleukin-10 in murine monocytes/macrophages for anti-inflammatory therapy in a murine model of autoimmune myocarditis. Journal of the American Heart Association, 1(6), e003293. https://doi.org/10.1161/jaha.112.003293
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Gabriela Rosas, Raúl José Bobes Ruiz, Jacquelynne Cervantes Torres, Edda Sciutto, Gladis Fragoso
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Esta revista proporciona acceso abierto inmediato a su contenido, con base en el principio de ofrecer al público un acceso libre a las investigaciones para contribuir a un mayor intercambio global de conocimientos. Se distribuye bajo una licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional License.