El papel de los factores de transcripción en la regulación genética

Autores/as

DOI:

https://doi.org/10.30973/inventio/2022.18.46/4

Palabras clave:

nutrigenómica, factor de transcripción, nutrimento, expresión genética, enfermedades crónicas, alimentación

Resumen

La nutrigenómica busca dar respuesta a cómo los nutrimentos intervienen en los procesos de regulación genética del organismo debido a su capacidad para regular la expresión de genes. Los factores de transcripción cumplen una función importante, y su activación puede ser directa o indirecta por determinados nutrimentos. En este artículo se muestra cómo algunos nutrimentos pueden regular genes a través de factores de transcripción implicados en la regulación de procesos vitales para las funciones celulares, cuya alteración ha estado asociada con diversas patologías, como el cáncer, diabetes, obesidad, entre otras. La nutrigenómica ofrece una visión para la creación y el diseño de pautas alimentarias para mejorar la salud de las personas con riesgo de desarrollar estas enfermedades.

Biografía del autor/a

Gabriel Betanzos Cabrera, Instituto de Ciencias de la Salud (ICSA), Universidad Autónoma del Estado de Hidalgo (UAEH)

Instituto de Ciencias de la Salud (ICSA), Universidad Autónoma del Estado de Hidalgo (UAEH)

Juan Esteban Téllez Delgadillo, Licenciatura de Nutrición, Instituto de Ciencias de la Salud (ICSA), Universidad Autónoma del Estado de Hidalgo (UAEH)

Licenciatura de Nutrición, Instituto de Ciencias de la Salud (ICSA), Universidad Autónoma del Estado de Hidalgo (UAEH)

Héctor Enrique Fabela Illescas, Programa de Enfermedades Cardiometabólicas, Jurisdicción Sanitaria II Tulancingo, Servicios de Salud de Hidalgo

Programa de Enfermedades Cardiometabólicas, Jurisdicción Sanitaria II Tulancingo, Servicios de Salud de Hidalgo

Citas

Alemán, G., Torres, N. y Tovar, A. R. (2004). Los receptores activados por proliferadores de peroxisomas (PPARs) en el desarrollo de obesidad y resistencia a la insulina. Revista de Investigacion Clínica, 56(3), 351-367. https://www.imbiomed.com.mx/articulo.php?id=23583

Barber, M. D., Ross, J. A., Voss, A. C., Tisdale, M. J. y Fearon, K. C. (1999). The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. British Journal of Cancer, 81(1), 80-86. https://doi.org/10.1038/sj.bjc.6690654

Barrdahl, M., Rudolph, A., Hopper, J. L., Southey, M. C., Broeks, A., Fasching, P. A., Beckmann, M. W., Gago-Domínguez, M., Castelao, J. E., Guénel, P., Truong, T., Bojesen, S. E., Gapstur, S. M., Gaudet, M. M., Brenner, H., Arndt, V., Brauch, H., Hamann, U., Mannermaa, … y Chang‐Claude, J. (2017). Gene-environment interactions involving functional variants: results from the Breast Cancer Association Consortium. International Journal of Cancer, 141(9), 1830-1840. https://doi.org/10.1002/ijc.30859

Bellido, C., López-Miranda, J., Blanco-Colio, L. M., Pérez-Martínez, P., Muriana, F. J., Martín-Ventura, J. L., Marín, C., Gómez, P., Fuentes, F., Egido, J. y Pérez-Jiménez, F. (2004). Butter and walnuts, but not olive oil, elicit postprandial activation of nuclear transcription factor kappaB in peripheral blood mononuclear cells from healthy men. The American Journal of Clinical Nutrition, 80(6), 1487-1491. https://doi.org/10.1093/ajcn/80.6.1487

Bonzón Kulichenko, E. (2007). Acciones lipostáticas de la leptina actuando vía sistema nervioso central: mecanismos moleculares en el hígado y en el tejido adiposo blanco. Efecto de la resistencia central a la leptina. Ediciones de la Universidad de Castilla-La Mancha. http://hdl.handle.net/10578/970

Calder, P. C. (2017). Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochemical Society Transactions, 45(5), 1105-1115. https://doi.org/10.1042/BST20160474

Caputo, M., Zirpoli, H., Torino, G. y Tecce, M. F. (2011). Selective regulation of UGT1A1 and SREBP‐1c mRNA expression by docosahexaenoic, eicosapentaenoic, and arachidonic acids. Journal of Cellular Physiology, 226(1), 187-193. https://doi.org/10.1002/jcp.22323

Cariello, M., Piccinin, E. y Moschetta, A. (2021). Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH. Cellular and Molecular Gastroenterology and Hepatology, 11(5), 1519-1539. https://doi.org/10.1016/j.jcmgh.2021.01.012

Cheung, O. y Sanyal, A. J. (2008). Abnormalities of lipid metabolism in nonalcoholic fatty liver disease. Seminars in Liver Disease, 28(4), 351-359. https://doi.org/10.1055/s-0028-1091979

Colomer, R., Moreno-Nogueira, J. M., García-Luna, P. P., García-Peris, P., García-de-Lorenzo, A., Zarazaga, A., Quecedo, L., del Llano, J., Usán, L. y Casimiro, C. (2007). N-3 fatty acids, cancer and cachexia: a systematic review of the literature. British Journal of Nutrition, 97(5), 823-831. https://doi.org/10.1017/S000711450765795X

De Martin, R., Hoeth, M., Hofer-Warbinek, R. y Schmid, J. A. (2000). The transcription factor NF-kB and the regulation of vascular cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(11), e83-e88. https://doi.org/10.1161/01.ATV.20.11.e83

Denechaud, P. D., Dentin, R., Girard, J. y Postic, C. (2008). Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Letters, 582(1), 68-73. https://doi.org/10.1016/j.febslet.2007.07.084

Dentin, R., Pégorier, J. P., Benhamed, F., Foufelle, F., Ferré, P., Fauveau, V., Magnuson, M. A., Girard, J. y Postic, C. (2004). Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP‐1c on glycolytic and lipogenic gene expression. Journal of Biological Chemistry, 279(19), 20314-20326. https://doi.org/10.1074/jbc.M312475200

Desvergne, B. y Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews, 20(5), 649-688. https://doi.org/10.1210/edrv.20.5.0380

Horton, J. D., Bashmakov, Y., Shimomura, I. y Shimano, H. (1998). Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proceedings of the National Academy of Sciences, 95(11), 5987-5992. https://doi.org/10.1073/pnas.95.11.5987

Iizuka, K. y Horikawa, Y. (2008). ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocrine Journal, 55(4), 617-624. https://doi.org/10.1507/endocrj.K07E-110

Innes, J. K. y Calder, P. C. (2020). Marine omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. International Journal of Molecular Sciences, 21(4), 1362. https://doi.org/10.3390/ijms21041362

Janani, C. y Kumari, B. R. (2015). PPAR gamma gene–a review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(1), 46-50. https://doi.org/10.1016/j.dsx.2014.09.015

Kim, K. H., Hong, S. P., Kim, K., Park, M. J., Kim, K. J. y Cheong, J. (2007). HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARγ. Biochemical and Biophysical Research Communications, 355(4), 883-888. https://doi.org/10.1016/j.bbrc.2007.02.044

Kong, W., Yen, J. H., Vassiliou, E., Adhikary, S., Toscano, M. G. y Ganea, D. (2010). Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids in Health and Disease, 9(1), 1-10. https://doi.org/10.1186/1476-511X-9-12

Lee, A. H., Scapa, E. F., Cohen, D. E. y Glimcher, L. H. (2008). Regulation of hepatic lipogenesis by the transcription factor XBP1. Science, 320(5882), 1492-1496. https://doi.org/10.1126/science.1158042

Lee, J. N., Zhang, X., Feramisco, J. D., Gong, Y. y Ye, J. (2008). Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. Journal of Biological Chemistry, 283(48), 33772-33783. https://doi.org/10.1074/jbc.M806108200

Lei, Y., Zhou, S., Hu, Q., Chen, X. y Gu, J. (2020). Carbohydrate response element binding protein (ChREBP) correlates with colon cancer progression and contributes to cell proliferation. Scientific Reports, 10(1), 4233. https://doi.org/10.1038/s41598-020-60903-9

Liang, G., Yang, J., Horton, J. D., Hammer, R. E., Goldstein, J. L. y Brown, M. S. (2002). Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. Journal of Biological Chemistry, 277(11), 9520-9528. https://doi.org/10.1074/jbc.M111421200

Lin, J., Yang, R., Tarr, P. T., Wu, P. H., Handschin, C., Li, S., Yang, W., Pei, L., Uldry, M., Tontonoz, P., Newgard, C. B. y Spiegelman, B. M. (2005). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell, 120(2), 261-273. https://doi.org/10.1016/j.cell.2004.11.043

Manickam, E., Sinclair, A. J. y Cameron-Smith, D. (2010). Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids in Health and Disease, 9, 1-8. https://doi.org/10.1186/1476-511X-9-57

McCarthy, E. M. y Rinella, M. E. (2012). The role of diet and nutrient composition in nonalcoholic fatty liver disease. Journal of the Academy of Nutrition and Dietetics, 112(3), 401-409. https://doi.org/10.1016/j.jada.2011.10.007

Moldavski, O., Zushin, P. H., Berdan, C. A., Van Eijkeren, R. J., Jiang, X., Qian, M., Ory, D. S., Covey, D. F., Nomura, D. K., Stahl, A., Weiss, E. J. y Zoncu, R. (2021). 4β-Hydroxycholesterol is a prolipogenic factor that promotes SREBP1c expression and activity through the liver X receptor. Journal of Lipid Research, 62, 100051. https://doi.org/10.1016/j.jlr.2021.100051

Müller, M. y Kersten, S. (2003). Nutrigenomics: goals and strategies. Nature Reviews Genetics, 4(4), 315-322. https://doi.org/10.1038/nrg1047

Nagai, Y., Yonemitsu, S., Erion, D. M., Iwasaki, T., Stark, R., Weismann, D., Dong, J., Zhang, D., Jurczak, M. J., Löffler, M. G., Cresswell, J., Yu, X. X., Murray, S. F., Bhanot, S., Monia, B. P., Bogan, J. S., Samuel, V. y Shulman, G. I. (2009). The role of peroxisome proliferator-activated receptor γ coactivator-1 β in the pathogenesis of fructose-induced insulin resistance. Cell Metabolism, 9(3), 252-264. https://doi.org/10.1016/j.cmet.2009.01.011

Nanjan, M. J., Mohammed, M., Kumar, B. P. y Chandrasekar, M. J. N. (2018). Thiazolidinediones as antidiabetic agents: a critical review. Bioorganic Chemistry, 77, 548-567. https://doi.org/10.1016/j.bioorg.2018.02.009

Pacheco, D. (2006). Bioquímica médica. Limusa.

Pahl H. L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18(49), 6853-6866. https://doi.org/10.1038/sj.onc.1203239

Pérez, G., Gómez, C. y Orozco, E. (2000). Expresión y regulación génica. En: Orozco, E. y P. Gariglio (eds.), Genética y biología molecular (pp. 39-57). Limusa.

Pettinelli, P. y Videla, L. A. (2011). Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP‐1c induction. The Journal of Clinical Endocrinology & Metabolism, 96(5), 1424-1430. https://doi.org/10.1210/jc.2010-2129

Roche, H. M. (2006). Nutrigenomics–new approaches for human nutrition research. Journal of the Science of Food and Agriculture, 86(8), 1156-1163. https://doi.org/10.1002/jsfa.2484

Sanderson, I. R. y Naik, S. (2000). Dietary regulation of intestinal gene expression. Annual Review of Nutrition, 20(1), 311-338. https://doi.org/10.1146/annurev.nutr.20.1.311

Shi, Y., Zou, Y., Shen, Z., Xiong, Y., Zhang, W., Liu, C. y Chen, S. (2020). Trace elements, PPARs, and metabolic syndrome. International Journal of Molecular Sciences, 21(7), 2612. https://doi.org/10.3390/ijms21072612

Silveira Rodríguez, M. B., Monereo Megías, S. y Molina Baena, B. (2003). Alimentos funcionales y nutrición óptima: ¿cerca o lejos? Revista Española de Salud Pública, 3(77), 317-331. http://dx.doi.org/10.1590/S1135-57272003000300003

Tanaka, N., Zhang, X., Sugiyama, E., Kono, H., Horiuchi, A., Nakajima, T., Kanbe, H., Tanaka, E., Gonzalez, F. J. y Aoyama, T. (2010). Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochemical Pharmacology, 80(10), 1601-1612. https://doi.org/10.1016/j.bcp.2010.07.031

Troesch, B., Eggersdorfer, M., Laviano, A., Rolland, Y., Smith, A. D., Warnke, I., Weimann, A. y Calder, P. C. (2020). Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients, 12(9), 2555. https://doi.org/10.3390/nu12092555

Tropp, B. E. (2008). Molecular biology. Jones & Bartlett Publishers.

Xu, E. H., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., Stermbach, D. D., Lehman, J. M., Wisely, G. B., Wilson, T. M., Kmiewer, S. A. y Miburn, M. W. (1999). Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Molecular Cell, 3(3), 397-403. https://doi.org/10.1016/S1097-2765(00)80467-0

Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R. K., Henzel, W. J., Shillinglaw, W., Arnot, D. y Uyeda, K. (2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proceedings of the National Academy of Sciences, 98(16), 9116-9121. https://doi.org/10.1073/pnas.161284298

Yessoufou, A., Plé, A., Moutairou, K., Hichami, A. y Khan, N. A. (2009). Docosahexaenoic acid reduces suppressive and migratory functions of CD4CD25 regulatory T-cells. Journal of Lipid Research, 50(12), 2377-2388. https://doi.org/10.1194/jlr.M900101-JLR200

Zhou, Y. T., Shimabukuro, M., Wang, M. Y., Lee, Y., Higa, M., Milburn, J. L., Newgard, C. B. y Unger, R. H. (1998). Role of peroxisome proliferator-activated receptor α in disease of pancreatic β cells. Proceedings of the National Academy of Sciences, 95(15), 8898-8903. https://doi.org/10.1073/pnas.95.15.8898

El papel de los factores de transcripción en la regulación genética

Publicado

2023-06-29

Cómo citar

Betanzos Cabrera, G., Téllez Delgadillo, J. E., & Fabela Illescas, H. E. . (2023). El papel de los factores de transcripción en la regulación genética. Inventio, 18(46), 1–13. https://doi.org/10.30973/inventio/2022.18.46/4

Número

Sección

Artículos