ARN mensajero (mRNA), una molécula con potencial aplicación terapéutica y preventiva

Messenger RNA (mRNA), a molecule with potential therapeutic and preventive application

Autores/as

DOI:

https://doi.org/10.30973/inventio/2022.18.44/8

Palabras clave:

mRNA, Vacunas, Enfermedades crónicas, inmunización, tratamiento novedoso

Resumen

Los ácidos nucleicos (ADN y ARN) tienen la importante función de almacenar, expresar y transmitir la información genética de los seres vivos. El ADN actúa como "repositorio" de la información, en el núcleo de las células, y el ARN mensajero (mRNA) transmite esa información al sitio de síntesis. Esta propiedad permite utilizar al mRNA como agente terapéutico o para la generación de inmunidad contra organismos patógenos. En particular es interesante el diseño de vacunas basadas en mRNA que se han probado con éxito contra el covid-19, además del uso del mRNA contra enfermedades no infecciosas, entre ellas la diabetes tipo 1, la hemofilia, el asma y ciertos tipos de cáncer, incluyendo el melanoma. Las posibilidades terapéuticas del mRNA son muy amplias.

 

Nucleic acids (DNA and RNA) have the important function of storing, expressing and transmitting the genetic information of living beings. DNA acts as an information "repository" in the cells nucleus, and the messenger RNA (mRNA) "transmits" that information to the site of synthesis. This property allows mRNA to be used as a therapeutic agent or for the generation of immunity against pathogenic organisms. Particularly interesting is the design of mRNA -based vaccines, which have been successfully tested against covid-19, in addition to the use of mRNA against non-infectious diseases, including type 1 diabetes, hemophilia, asthma and certain types of cancer, including melanoma. The therapeutic possibilities of mRNA are very broad.

Biografía del autor/a

Gabriela Rosas, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM)

Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM)

Raúl José Bobes Ruiz, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)

Jacquelynne Cervantes Torres, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM)

Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM)

Edda Sciutto, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)

Gladis Fragoso, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM)

Citas

Alberer, M., Gnad-Vogt, U., Hong, H. S., Mehr, K. T., Backert, L., Finak, G., Gottardo, R., Bica, M. A., Garofano, A., Koch, S. D., Fotin-Mleczek, M., Hoerr, I., Clemens, R. y Von Sonnenburg, F. (2017). Safety and immunogenicity of a mrna rabies vaccine in healthy adults: an openlabel, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet, 390(10101), 1511-1520. https://doi.org/10.1016/S0140-6736(17)31665-3

Aldrich, C., Leroux-Roels, I., Huang, K. B., Bica, M. A., Loeliger, E., Schoenborn-Kellenberger, O., Walz, L., Leroux-Roels, G., Von Sonnenburg, F. y Oostvogels, L. (2021). Proof-ofconcept of a low-dose unmodified mrna-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine, 39(8), 1310-1318. https://doi.org/10.1016/j.vaccine.2020.12.070

An, D., Schneller, J. L., Frassetto, A., Liang, S., Zhu, X., Park, J. S., Theisen, M., Hong, S. J., Zhou, J., Rajendran, R., Levy, B., Howell, R., Besin, G., Presnyak, V., Sabnis, S., Murphy-Benenato, K. E., Kumarasinghe, E. S., Salerno, T., Mihai, C., Lukacs, C. M., Chandler, R. J., Guey, L. T., Venditti, C. P. y Martini, P. G. V. (2017). Systemic messenger rna therapy as a treatment for methylmalonic acidemia. Cell Reports, 21(12), 3548-3558. https://doi.org/10.1016/j.celrep.2017.11.081

Andries, O., Mc Cafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., Kitada, T. (2015). N1-methylpseudouridine-incorporated mrna outperforms pseudouridine-incorporated mrna by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release, 217, 337-44. https://doi.org/10.1016/j.jconrel.2015.08.051

Asrani, K. H., Cheng, L., Cheng, C. J. y Subramanian, R. R. (2018). Arginase I mrna therapy. A novel approach to rescue arginase 1 enzyme deficiency. rna Biology, 15(7), 914-922. https://doi.org/10.1080/15476286.2018.1475178

August, A., Attarwala, H. Z., Himansu, S., Kalidindi, S., Lu, S., Pajon, R., Han, S., Lecerf, J. M., Tomassini, J. E., Hard, M., Ptaszek, L. M., Crowe, J. E. y Zaks, T. (2021). A phase 1 trial of lipid-encapsulated mrna encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nature Medicine, 27(12), 2224-2233. https://doi.org/10.1038/s41591-021-01573-6

Bahl, K., Senn, J. J., Yuzhakov, O., Bulychev, A., Brito, L. A., Hassett, K. J., Laska, M. E., Smith, M., Almarsson, Ö., Thompson, J., Ribeiro, A. M., Watson, M., Zaks, T. y Ciaramella, G. (2017). Preclinical and clinical demonstration of immunogenicity by mrna vaccines against h10n8 and h7n9 influenza viruses. Molecular Therapy, 25(6), 1316-1327. https://doi.org/10.1016/j.ymthe.2017.03.035

Benteyn, D., Heirman, C., Bonehill, A., Thielemans, K. y Breckpot, K. (2015). mrna-based dendritic cell vaccines. Expert Review of Vaccines, 14(2), 161-176. https://doi.org/10.1586/14760584.2014.957684

Boczkowski, D., Nair, S. K., Snyder, D. y Gilboa, E. (1996). Dendritic cells pulsed with rna are potent antigen-presenting cells in vitro and in vivo. Journal of Experimental Medicine, 184(2), 465-472. https://doi.org/10.1084/jem.184.2.465

Bogers, W. M., Oostermeijer, H., Mooij, P., Koopman, G., Verschoor, E. J., Davis, D., Ulmer, J. B., Brito, L. A., Cu, Y., Banerjee, K., Otten, G. R., Burke, B., Dey, A., Heeney, J. L., Shen, X., Tomaras, G. D., Labranche, C., Montefiori, D. C., Liao, H. X., Haynes, B., Geall, A. J. y Barnett, S. W. (2015). Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying rna vaccine expressing hiv type 1 envelope with a cationic nanoemulsion. The Journal of Infectious Diseases, 211(6), 947-955. https://doi.org/10.1093/infdis/jiu522

Creusot, R. J., Chang, P., Healey, D. G., Tcherepanova, I. Y., Nicolette, C. A. y Fathman, C. G. (2010). A short pulse of il-4 delivered by dcs electroporated with modified mrna can both prevent and treat autoimmune diabetes in nod mice. Molecular Therapy, 18(12), 2112-20. https://doi.org/10.1038/mt.2010.146

DeRosa, F., Guild, B., Karve, S., Smith, L., Love, K., Dorkin, J. R., Kauffman, K. J., Zhang, J., Yahalom, B., Anderson, D. G. y Heartlein, M. W. (2016). Therapeutic efficacy in a hemophilia B model using a biosynthetic mrna liver depot system. Gene Therapy, 23, 699-707. https://doi.org/10.1038/gt.2016.46

Hassett, K. J., Benenato, K. E., Jacquinet, E., Lee, A., Woods, A., Yuzhakov, O., Himansu, S., Deterling, J., Geilich, B. M., Ketova, T., Milhai, C., Lyyn, A., McFyden, I., Moore, M. J., Seen, J. J., Stanton, M. G., Almarsson, Ö., Ciaramella, G. y Brito, L. A. (2019). Optimization of lipid nanoparticles for intramuscular administration of mrna vaccines. Molecular Therapy Nucleic Acids, 15, 1-11. https://doi.org/10.1016/j.omtn.2019.01.013

Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M. A., Lallas, C. D., Dahm, P., Niedzwiecki, D., Gilboa, E. y Vieweg, J. (2002). Autologous dendritic cells transfected with prostatespecific antigen rna stimulate ctl responses against metastatic prostate tumors. The Journal of Clinical Investigation, 109(3), 409-17. https://doi.org/10.1172/jci14364

Hornung, V., Barchet, W., Schlee, M. y Hartmann, G. (2008). rna recognition via tlr7 and tlr8. Handbook of Experimental Pharmacology, 183, 71-86. https://doi.org/10.1007/978-3-540-72167-3_4

Jiang, L., Berraondo, P., Jericó, D., Guey, L. T., Sampedro, A., Frassetto, A., Benenato, K. E., Burke, K., Santamaría, E., Alegre, M., Pejenaute, A., Kalariya, M., Butcher, W., Park, J. S., Zhu, X., Sabnis, S., Kumarasinghe, E. S., Salerno, T., Kenney, M.,... y Fontanellas, A. (2018). Systemic messenger rna as an etiological treatment for acute intermittent porphyria. Nature Medicine, 24(12), 1899-1909. https://doi.org/10.1038/s41591-018-0199-z

Jirikowski, G. F., Sanna, P. P., Maciejewski-Lenoir, D. y Bloom, F. E. (1992). Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mrna. Science, 255(5047), 996-998. https://doi.org/10.1126/science.1546298

Kallen, K.-J. y Theß, A. (2014). A development that may evolve into a revolution in medicine: mrna as the basis for novel, nucleotide-based vaccines and drugs. Therapeutic Advances in Vaccines and Immunotherapy 2(1), 10-31. https://doi.org/10.1177/2051013613508729

Karikó, K., Ni, H., Capodici, J., Lamphier, M. y Weissman, D. (2004). mrna is an endogenous ligand for Toll-like receptor 3. Journal of Biological Chemistry, 279(13), 12542-12550. https://doi.org/10.1074/jbc.m310175200

Karikó, K., Buckstein, M., Ni, H. y Weissman, D. (2005). Suppression of rna recognition by Tolllike receptors: The impact of nucleoside modification and the evolutionary origin of rna. Immunity, 23(2), 165-175. https://doi.org/10.1016/j.immuni.2005.06.008

Karikó, K., Muramatsu, H., Keller, J. M. y Weissman, D. (2012). Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mrna encoding erythropoietin. Molecular Therapy, 20(5), 948-953. https://doi.org/10.1038/mt.2012.7

Koido, S., Kashiwaba, M., Chen, D., Gendler, S., Kufe, D. y Gong, J. (2000). Induction of antitumor immunity by vaccination of dendritic cells transfected with muc1 rna. The Journal of Immunology, 165, 5713-5719. https://doi.org/10.4049/jimmunol.165.10.5713

Lamb, Y. N. (2021). bnt162b2 mrna covid-19 vaccine: first approval. Drugs, 81, 495-501. https://doi.org/10.1007/s40265-021-01480-7

Levy, O., Zhao, W., Mortensen, L. J., Leblanc, S., Tsang, K., Fu, M., Phillips, J. A., Sagar, V., Anandakumaran, P., Ngai, J., Cui, C. H., Eimon, P., Angel, M., Lin, C. P., Yanik, M. F. y Karp, J. M. (2013). mrna-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood, 122(14), e23-e32. https://doi.org/10.1182/blood-2013-04-495119

Luo, F., Zheng, L., Hu, Y., Liu, S., Wang, Y., Xiong, Z., Hu, X. y Tan, F. (2017). Induction of protective immunity against Toxoplasma gondii in mice by ucleoside triphosphate hydrolase-ii (ntpase-ii) self-amplifying rna vaccine encapsulated in lipid nanoparticle (lnp). Frontiers in Microbiology, 8, 605. https://doi.org/10.3389/fmicb.2017.00605

Mahase, E. (2020). covid-19: Moderna applies for us and eu approval as vaccine trial reports 94.1% efficacy. bml, 371, m4709. https://doi.org/10.1136/bmj.m4709

Mallory, K. L., Taylor, J. A., Zou, X., Waghela, I. N., Schneider, C. G., Sibilo, M. Q., Punde, N. M., Perazzo, L. C., Savransky, T., Sedegah, M., Dutta, S., Janse, C. J., Pardi, N., Lin, P. J. C., Tam, Y. K., Weissman, D. y Angov, E. (2021). Messenger rna expressing Pfcsp induces functional, protective immune responses against malaria in mice. npj Vaccines, 6(84), 1-12. https://doi.org/10.1038/s41541-021-00345-0

Mays, L. E., Ammon-Treiber, S., Mothes, B., Alkhaled, M., Rottenberger, J., Müller-Hermelink, E. S., Grimm, M., Mezger, M., Beer-Hammer, S., Von Stebut, E., Rieber, N., Nürnberg, B., Schwab, M., Handgretinger, R., Idzko, M., Hartl, D. y Kormann, M. S. (2013). Modified Foxp3 mrna protects against asthma through an il-10-dependent mechanism. The Journal of Clinical Investigation, 123(3), 1216-1228. https://doi.org/10.1172/jci65351

Medina-Magües, L. G., Gergen, J., Jasny, E., Petsch, B., Lopera-Madrid, J., Medina-Magües, E. S., Salas-Quinchucua, C. y Osorio, J. E. (2021). mrna vaccine rotects against Zika virus. Vaccines, 9(12), 1464. https://doi.org/10.3390/vaccines9121464

Meyer, M., Huang, E., Yuzhakov, O., Ramanathan, P., Ciaramella, G. y Bukreyev, A. (2018). Modified mrna-based vaccines elicit robust immune responses and protect Guinea pigs from Ebola virus disease. The Journal of Infectious Diseases, 217(3), 451-455. https://doi.org/10.1093/infdis/jix592

Okumura, K., Nakase, M., Inui, M., Nakamura, S., Watanabe, Y. y Tagawa, T. (2008). Bax mrna therapy using cationic liposomes for human malignant melanoma. The Journal of Gene Medicine, 10(8), 910-917. https://doi.org/10.1002/jgm.1214

Pollard, C., Rejman, J., De Haes, W., Verrier, B., Van Gulck, E., Naessens, T., De Smedt, S., Bogaert, P., Grooten, J., Vanham, G. y De Koker, S. (2013). Type I ifn counteracts the induction of antigen-specific immune responses by lipid-based delivery of mrna vaccines. Molecular Therapy, 21(1), 251-259. https://doi.org/10.1038/mt.2012.202

Robinson, E., MacDonald, K. D., Slaughter, K., McKinney, M., Patel, S., Sun, C. y Sahay, G. (2018). Lipid nanoparticle-delivered chemically modified mifn restores chloride secretion in cystic fibrosis. Molecular Therapy, 26(8), 2034-2046. https://doi.org/10.1016/j.ymthe.2018.05.014

Sahin, U., Karikó, K. y Türeci, Ö. (2014). mrna-based therapeutics: developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759-780. https://doi.org/10.1038/nrd4278

Wang, Y., Zhang, Z., Luo, J., Han, X., Wei, Y. y Wei, X. (2021). mrna vaccine: a potential therapeutic strategy. Molecular Cancer, 20, 33. https://doi.org/10.1186/s12943-021-01311-z

Weissman, D. (2015). mrna transcript therapy. Expert Review of Vaccines, 14(2), 265-281. https://doi.org/10.1586/14760584.2015.973859

Weng, Y., Li, C., Yang, T., Hu, B., Zhang, M., Guo, S., Xiao, H., Liang, X. J. y Huang, Y. (2020). The challenge and prospect of mrna therapeutics landscape. Biotechnology Advances, 40, 107534. https://doi.org/10.1016/j.biotechadv.2020.107534

Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A. y Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247(4949 pt. 1), 1465-1468. https://doi.org/10.1126/science.1690918

Zangi, L., Lui, K. O., Von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., Später, D., Xu, H., Tabebordbar, M., Gorbatov, R., Sena, B., Nahrendorf, M., Briscoe, D. M., Li, R. A., Wagers, A. J., Rossi, D. J., Pu, W. T. y Chien, K. R. (2013). Modified mrna directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 31(10), 898-907. https://doi.org/10.1038/nbt.2682

Zimmermann, O., Homann, J. M., Bangert, A., Müller, A. M., Hristov, G., Goeser, S., Wiehe, J. M., Zittrich, S., Rottbauer, W., Torzewski, J., Pfitzer, G., Katus, H. A. y Kaya, Z. (2012). Successful use of mrna-nucleofection for overexpression of interleukin-10 in murine monocytes/macrophages for anti-inflammatory therapy in a murine model of autoimmune myocarditis. Journal of the American Heart Association, 1(6), e003293. https://doi.org/10.1161/jaha.112.003293

ARN mensajero (mRNA), una molécula con potencial aplicación terapéutica y preventiva

Publicado

2022-11-11

Cómo citar

Rosas, G., Bobes Ruiz, R. J., Cervantes Torres, J., Sciutto, E., & Fragoso, G. (2022). ARN mensajero (mRNA), una molécula con potencial aplicación terapéutica y preventiva: Messenger RNA (mRNA), a molecule with potential therapeutic and preventive application. Inventio, 18(44), 1–13. https://doi.org/10.30973/inventio/2022.18.44/8

Número

Sección

Artículos