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resumen

La modelación matemática de bioprocesos es una herramien-

ta que permite estimar parámetros, simular, optimizar, escalar y 

desarrollar estrategias de control, combinando principios de in-

geniería, biotecnología y avances computacionales. El presen-

te trabajo explora las características de los modelos mecanicis-

tas, probabilísticos e híbridos, y destaca sus aplicaciones en la 

industria biotecnológica. El artículo presenta conceptos esen-

ciales de cada uno de los modelos descritos, además de ejem-

plos relevantes que ilustran su impacto económico e industrial 

en la biotecnología. La modelación no sólo impulsa una bioma-

nufactura más eficiente, sino que también contribuye a enfren-

tar los retos ambientales y económicos actuales.
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de bioprocesos sostenibles

A R T Í C U L O S

abstract

Mathematical modeling of bioprocesses is a tool that allows for 

parameter estimation, simulation, optimization, scaling, and de-

velopment of control strategies, combining engineering prin-

ciples, biotechnology, and computational advances. This study 

explores the characteristics of mechanistic, probabilistic, and 

hybrid models and highlights their applications in the biotech-

nology industry. The article presents essential concepts from 

each of the described models, along with relevant examples 

that illustrate their economic and industrial impact on biotech-

nology. Modeling not only drives more efficiency biomanufac-

turing but also contributes to addressing current environmen-

tal and economic challenges.
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Introducción

Un bioproceso es una forma en que la ingeniería bioquímica aprovecha los organismos vivos, 

como bacterias, hongos, levaduras, microalgas, células e incluso sus componentes, para trans-

formar materias primas en compuestos que pueden significar un beneficio en la vida diaria. 

Métodos tradicionales, como la elaboración de pan, cerveza o queso, son ejemplos cotidianos 

de bioprocesos, ya que la reacción principal de transformación está determinada por la acción 

de los microorganismos. Estos procesos aplican los principios de la biología y la ingeniería en 

entornos controlados, como laboratorios o plantas de producción, para resolver problemas o 

satisfacer necesidades humanas. La ingeniería bioquímica moderna ha permitido perfeccio-

nar y escalar algunas de estas técnicas. Así, en los últimos años, se han desarrollado soluciones 

innovadoras en áreas como la salud, la industria y la sostenibilidad ambiental.

En términos generales, la ingeniería de bioprocesos es un área de la ingeniería bioquími-

ca que integra el conocimiento de la biotecnología con herramientas propias de la ingeniería 

química, como el diseño, control y optimización de sistemas, con el objetivo de hacer más efi-

ciente la elaboración de diversos productos a gran escala. Por ejemplo, las bacterias, hongos 

y levaduras se emplean en la fabricación de medicamentos, alimentos fermentados y biocom-

bustibles, mientras que las microalgas pueden producir suplementos nutricionales. Lo fasci-

nante es cómo estas diminutas formas de vida, combinadas con principios de ingeniería, pue-

den ofrecer soluciones prácticas con un impacto positivo en la calidad de vida de las personas.

Según datos de Montoya (2021), el mercado mundial de bioproductos se estima en sete-

cientos mil millones de dólares aproximadamente, y uno de los principales mercados es Norte-

américa. Asimismo, la Secretaría de Agricultura y Desarrollo Rural (2024) resalta la importancia 

de desarrollar nuevos negocios sostenibles que aprovechen los residuos agrícolas e incorpo-

ren bioprocesos para la producción de bienes innovadores.

El desarrollo de bioprocesos es fundamental para enfrentar retos globales, como la sos-

tenibilidad, de manera innovadora y eficiente. Sin embargo, esta tarea no es sencilla, ya que 

implica considerar múltiples factores biológicos, químicos y operativos. Analizar todos estos 

elementos de manera simultánea puede ser una tarea compleja y en ocasiones resultar im-

posible. En estos casos, las herramientas matemáticas se vuelven indispensables, ya que per-

miten predecir y entender cómo se comportará el proceso a lo largo del tiempo. Gracias a eso 

también es posible optimizar el bioproceso, diseñarlo y operarlo.

La modelación matemática permite predecir el comportamiento de un bioproceso sin 

necesidad de realizar costosos y complejos experimentos. Mediante el uso de herramientas 

de este tipo y computacionales es posible simular y optimizar sistemas biotecnológicos bajo 

ciertas consideraciones. Esta práctica no sólo reduce los riesgos y recursos necesarios en la 

fase experimental, sino que también proporciona una comprensión profunda de los proce-

sos involucrados, lo que facilita su escalado industrial y asegura la calidad del producto final. 
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El desarrollo de modelos matemáticos permite generar y organizar información, así como es-

tablecer estrategias de control del bioproceso.

Este artículo tiene el objetivo de presentar de forma clara y sencilla los distintos tipos de 

modelos matemáticos aplicados al diseño de bioprocesos. Está fundamentado en una revi-

sión estructurada de literatura especializada, con el propósito de mostrar el marco teórico 

que sustenta los modelos matemáticos aplicados en los bioprocesos. A lo largo del texto se 

presentan y analizan distintos enfoques de modelado —mecanicistas, probabilísticos e hí-

bridos—, lo cual refuerza su importancia para el escalamiento, la optimización y el control 

de procesos industriales.

Tipos de modelos en bioprocesos

Los modelos de bioprocesos se clasifican de varias formas. Una de ellas es clasificarlos en: 

mecanísticos, que se basan en representaciones abstractas de un mecanismo a través de un 

conjunto de ecuaciones, y probabilísticos, que se basan en la probabilidad y el análisis esta-

dístico de datos. Asimismo, se pueden combinar ambas estrategias para generar modelos hí-

bridos. Cada uno tiene aplicaciones específicas y ventajas únicas para enfrentar los retos de 

la biomanufactura moderna. A continuación se explora cómo estos modelos han transfor-

mado el desarrollo de bioprocesos y sus aplicaciones en la industria.

Modelos mecanicistas 

Imaginemos que se tiene una receta para hornear un pastel. Se sabe cuánto tiempo debe es-

tar en el horno, a qué temperatura, y las cantidades exactas de harina, azúcar y huevos que 

deberán usarse para formularlo. Los modelos mecanísticos son como esa receta detallada: 

utilizan ecuaciones matemáticas para describir paso a paso cómo funciona el bioproceso. Es-

tos modelos se basan en leyes cinéticas, como la ley de velocidad de reacción, y describen el 

crecimiento celular y la producción de metabolitos mediante ecuaciones diferenciales fun-

damentadas en principios físico-químicos (Solle et al., 2017).

Por ejemplo, si se está produciendo ácido láctico en un biorreactor, este tipo de modelo 

puede predecir cómo el pH, la temperatura o la concentración de nutrientes afectará el cre-

cimiento de los microorganismos y la producción del compuesto deseado. Es como ajustar 

el horno y los ingredientes para garantizar que el pastel salga perfecto cada vez.

Ahora bien, los enfoques de modelado mecanístico se clasifican en cuatro tipos princi-

pales, según dos criterios: la estructura celular y la homogeneidad de la población, como se 

muestra en la figura 1 (p. 5).

	- Modelos no estructurados y no segregados. Estos modelos son los más simples. Consi-

deran que todas las células dentro del sistema son iguales —en tamaño, edad y es-

tado metabólico— y no incluyen detalles sobre la estructura interna de las células. 
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Son ideales para describir procesos con dinámica sencilla, como la fermentación por 

lotes de una sola especie microbiana (figura 1a, p. 5).

	- Modelos no estructurados y segregados. Aunque estos modelos tampoco incluyen 

detalles internos de las células, sí consideran que dentro de una población puede 

haber diferencias importantes, como variaciones en el tamaño o la edad. Usan fun-

ciones matemáticas más complejas para describir estas diferencias y son útiles en 

sistemas donde estas características tienen un impacto significativo, pero no es ne-

cesario modelar el metabolismo intracelular (figura 1b, p. 5).

	- Modelos estructurados y no segregados. En este enfoque se incorporan detalles sobre 

la estructura celular, como compartimentos internos o rutas metabólicas; pero asu-

men que todas las células tienen una forma y tamaño homogéneos. Estos modelos 

permiten un mayor nivel de detalle sobre los procesos metabólicos y son adecua-

dos para sistemas complejos, como la producción de proteínas recombinantes en 

biorreactores (figura 1c, p. 5).

	- Modelos estructurados y segregados. Este es el nivel más complejo de modelado me-

canístico. Estos modelos consideran tanto la estructura interna de las células como 

las diferencias entre ellas, como edad, tamaño o estado metabólico. Este enfoque es 

ideal para describir poblaciones celulares heterogéneas o sistemas biológicos con 

múltiples especies, como cultivos mixtos (figura 1d, p. 5).

Diversos trabajos han desarrollado modelos no estructurados y no segregados para des-

cribir procesos de producción de metabolitos. Ejemplo de ello son los estudios de Jinescu et 

al. (2014) y Sharma y Mishra (2014), en los que se proponen modelos para la producción de 

ácido láctico.

El primero describe que el modelo de elaboración de ácido láctico es una cinética de or-

den cero, donde el sistema produce este ácido a una tasa constante, sin evidencias de dismi-

nución de velocidad por agotamiento de sustrato (lactosa) o inhibición por el propio ácido. 

A partir de ello se plantean ecuaciones de balance de masa que consideran tanto la transfe-

rencia de masa en el sistema como la cinética de producción del ácido. En el segundo se uti-

liza el modelo de Gompertz modificado, que describe la evolución de la biomasa a partir del 

logaritmo del cociente entre la población celular en un tiempo dado y la inicial, así como el 

modelo de Luedeking-Piret para describir la producción de ácido láctico.

En ambos estudios se evaluó el efecto de algunos factores, como el pH y la temperatu-

ra, en las tasas de crecimiento microbiano y en la producción de metabolitos. Estos estudios 

mostraron una buena concordancia con los datos experimentales y simulados, por lo que 

pueden emplearse para predecir la dinámica de la fermentación láctica en lotes con variables 

de proceso dentro de los rangos estudiados. Cabe destacar que estos modelos no conside-

ran el metabolismo ni la existencia de subpoblaciones —por ejemplo, células vivas/muertas 
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Figura 1

Clasificación de los modelos mecanísticos

Fuente: elaboración propia.
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o activas/inactivas— como variables dependientes, por lo cual se clasifican como no estruc-

turados y no segregados.

Un enfoque de modelo no estructurado y segregado para la producción de ácido lácti-

co es descrito por Spann et al. (2019). Este modelo permite el monitoreo preciso y en tiempo 

real del cultivo de Streptococcus thermophilus. Emplea la ecuación de Monod modificada con 

inhibición para describir el crecimiento; un modelo químico que considera la disociación de 

ácidos y bases débiles en el medio de cultivo, y simulaciones de Monte Carlo, utilizadas para 

evaluar la incertidumbre en los parámetros del modelo y calcular el riesgo de no alcanzar la 

producción deseada de biomasa. Con ese modelo se pudieron describir las variaciones en la 

concentración de sustrato, biomasa y pH en diferentes regiones del biorreactor.

El enfoque del modelamiento realizado fue no estructurado, porque no describe deta-

lles del metabolismo intracelular; pero sí es segregado, dado que se modelan variaciones en 

la concentración de sustrato, biomasa y pH en diferentes regiones del biorreactor, lo que ge-

nera un comportamiento diferenciado en la población de células dependiendo de su loca-

lización. En este caso, no todas las células están en las mismas condiciones debido a los gra-

dientes de pH y sustrato, lo que implica segregación en función del ambiente de cultivo.

La elección del tipo de modelo depende del propósito y las necesidades del estudio. Si 

se necesita rapidez y simplicidad, los modelos no estructurados y no segregados pueden 

ser suficientes. En cambio, si se busca una representación detallada y precisa del sistema, los 

modelos estructurados y segregados serán la mejor opción. Sin embargo, éstos son más de-

mandantes en términos de información y capacidad computacional, y a veces los recursos 

computacionales con los que se cuenta limitan su uso. Un ejemplo de ello es el modelo desa-

rrollado por Oliveira et al. (2021), enfocado en el metabolismo central del carbono de Escheri-

chia coli, el cual simula la producción de ácido acrílico (aa) a través de tres rutas heterólogas: 

glicerol, malonil-coa y β-alanina. Utilizando el software copasi, se evaluó el rendimiento de 

cada ruta con glucosa o glicerol como fuente de carbono.

En cualquiera de los casos, los modelos mecanísticos son herramientas valiosas para com-

prender y optimizar los bioprocesos.

Modelos basados en datos (probabilísticos)

Ahora imaginemos que no se tiene una receta exacta, pero se ha recopilado información de 

cientos de recetas de pasteles. A partir de ello, se sabe el tiempo de horneado, las tempera-

turas de cocción y la proporción de los ingredientes, y se puede tener un buen análisis de los 

resultados obtenidos en cada caso. Con esta información se puede usar inteligencia artifi-

cial para encontrar patrones y determinar qué combinaciones funcionan mejor para conse-

guir un pastel muy rico. Así funcionan los modelos basados en datos: se apoyan en técnicas 

estadísticas, probabilísticas y de aprendizaje automático para analizar grandes cantidades 
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de datos y predecir resultados sin necesidad de comprender todos los detalles del proce-

so (Narayanan et al., 2019).

En el desarrollo de los bioprocesos este tipo de modelos es muy útil cuando el sistema 

es tan complejo que no se puede modelar fácilmente con principios mecanicistas. Por ejem-

plo, es posible optimizar la producción de un biocompuesto ajustando parámetros con base 

en las predicciones de un modelo entrenado con datos experimentales previos. Aunque es-

tos modelos no explican el proceso, son herramientas rápidas y efectivas para explorar con-

diciones óptimas y mejorar el rendimiento del proceso en tiempo real.

García-Camacho et al. (2016) modelaron el crecimiento de la microalga Karlodinium vene-

ficum en cultivos por lotes, mediante el uso de redes neuronales artificiales (ann), utilizando 

en específico redes de retropropagación y avance, que sirven para capturar las interacciones 

de nutrientes altamente no lineales en cultivos. Este tipo de modelo sirve cuando los tradi-

cionales, como el de Monod y sus variantes, son insuficientes para capturar las interacciones 

no lineales de múltiples nutrientes.

Un enfoque diferente para los modelos basados en datos es el modelamiento de apren-

dizaje automático estadístico —llamado en inglés statistical maching learning—, el cual re-

quiere para su aplicación tan sólo una pequeña cantidad de datos experimentales. Este 

enfoque tiene una perspectiva flexible basada en aprendizaje profundo para modelar re-

laciones no lineales. En el trabajo presentado por Sun et al. (2022), el enfoque del modela-

miento está basado en un proceso de regresión gaussiana —gaussian process regression—, 

que permite integrar información de múltiples fuentes con distintos niveles de fidelidad, lo 

cual optimiza la predicción en escenarios donde la adquisición de datos experimentales es 

costosa y limitada.

Se analizaron dos variantes del modelo: el Linear Autoregressive Gaussian Process (largp) y 

el Nonlinear Autoregressive Gaussian Process (nargp). Los resultados demostraron que para el 

escalado de biorreactores, donde los datos presentan alta variabilidad, largp ofrece un mejor 

desempeño, mientras que, en la transferencia de conocimiento entre líneas celulares, nargp 

es más adecuado, ya que permite capturar relaciones no lineales entre los datos. Comparado 

con métodos tradicionales, este tipo de modelos mejoró de forma significativa la precisión 

predictiva, en particular en condiciones de datos escasos. Los hallazgos reportados destacan 

el potencial del aprendizaje automático en biomanufactura para mejorar la eficiencia y 

confiabilidad en el modelado de bioprocesos.

Modelos híbridos

Los modelos híbridos combinan los métodos mecanicistas y los basados en datos para ofre-

cer lo mejor de ambos enfoques. Conocidos también como modelos de caja gris, permiten 

interpretar los resultados en términos de mecanismos biológicos, físicos y químicos mientras 
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aprovechan la flexibilidad del aprendizaje automático; son especialmente útiles en situaciones 

donde una comprensión parcial del sistema es suficiente para optimizar el proceso.

En el trabajo de Narayanan et al. (2020) se desarrolló un modelo híbrido en arquitectura 

serial, que combina un marco mecanicista basado en balances de masa con un componente 

estadístico —una red neuronal artificial, ann—, el cual estima las tasas específicas de consu-

mo/producción de metabolitos y células. Este tipo de modelo se denomina modelo híbrido 

serial, ya que las ann alimentan de forma directa las ecuaciones diferenciales de balance. La 

ann se entrena para predecir las tasas, y luego éstas alimentan los balances de masa, que son 

integrados para predecir la evolución del sistema.

En ese caso, se evaluó cuantitativamente la respuesta de modelos híbridos en compa-

ración con modelos estadísticos en la producción de proteínas terapéuticas en cultivos ce-

lulares de mamíferos. El modelo híbrido predijo con mayor precisión la densidad celular, la 

concentración de lactato y el título de proteína. A diferencia de los tradicionales, el modelo 

híbrido puede adaptarse y predecir escenarios no experimentados, con lo cual se reduce el 

número de ensayos necesarios en el laboratorio.

Aplicaciones de los modelos en la industria biotecnológica

La modelación en bioprocesos ha revolucionado la forma en que se diseñan y controlan los 

procesos industriales, como se describe en la figura 2. Desde la producción de medicamentos, 

Figura 2

Modelación en bioprocesos

Fuente: elaboración propia.
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como antibióticos y vacunas, hasta la de bioplásticos y biocombustibles, los productos deri-

vados de bioprocesos abarcan una amplia gama de aplicaciones industriales y comerciales.

Herramientas avanzadas de control de bioprocesos con base en modelos predictivos 

(mpc, por sus siglas en inglés) han permitido un salto importante en el monitoreo y la op-

timización. Para ello se desarrollan representaciones matemáticas que describen el com-

portamiento del sistema, las cuales se emplean para diseñar controladores que ajustan las 

variables del sistema en tiempo real. Con ello se aseguran condiciones óptimas durante la 

operación. Este enfoque incluye pasos esenciales, como el modelado, la simulación y el di-

seño del controlador antes de su implementación en el sistema real.

Por su parte, el mpc introduce un nivel de sofisticación adicional, al anticipar el compor-

tamiento futuro del sistema mediante algoritmos predictivos. Esto resulta especialmente 

valioso en procesos dinámicos, ya que permite realizar ajustes proactivos para optimizar el 

rendimiento y prevenir desviaciones. Ambas herramientas contribuyen a mejorar la calidad 

del producto final, reducir costos operativos y garantizar la sostenibilidad de los procesos.

Por ejemplo, en la producción de compuestos farmacéuticos, como la l-carnitina, se han 

desarrollado modelos como el descrito por Ilkova et al. (2015). En ese trabajo se desarrolló un 

modelo para describir la producción de carnitina a partir del aminoácido l-lisina, consideran-

do las condiciones de operación, el balance de masa y el uso de programación neurodiná-

mica. Como objetivo se planteó utilizar un modelo que representara la complejidad del sis-

tema y la optimización del proceso.

También se ha reportado el empleo del modelamiento de bioprocesos para la obtención 

de productos farmacéuticos, como la luteína. En ese sentido, se desarrolló un modelo de re-

des neuronales artificiales que resultó muy eficiente para predecir la producción de luteína 

en sistemas fotobiológicos, con aplicaciones potenciales en la optimización y el control de 

bioprocesos (Del Río-Chanona et al., 2017).

Asimismo, en la industria alimentaria, el modelamiento de los bioprocesos se aplica en 

el desarrollo de enzimas y probióticos, para asegurar productos de alta calidad con menor 

impacto ambiental. Tal es el caso del estudio llevado a cabo por Hernández-Acevedo et al. 

(2024), donde se realizó un modelamiento hidrodinámico y cinético de producción de pec-

tinasas, enzimas de interés industrial para diferentes fines, entre ellos, el procesamiento de 

jugos y vinos.

En este estudio se confirmó la eficacia del modelo de n tanques en serie para represen-

tar la producción de pectinasas en un cultivo fúngico dentro de un biorreactor de transpor-

te aéreo. El modelo logró integrar de manera precisa parámetros hidrodinámicos, de trans-

ferencia de masa y cinéticos para predecir la dinámica del crecimiento del hongo, así como 

el consumo de oxígeno y pectina, y la síntesis de exopectinasas y endopectinasas. Los re-

sultados mostraron una alta concordancia con los datos experimentales, donde destacó el 
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impacto de la tasa de transferencia de oxígeno y la concentración de pectina en la produc-

ción inicial de estas enzimas.

Otra aplicación clave de los modelos durante el desarrollo de un bioproceso es la utiliza-

ción de sensores virtuales. Estos elementos requieren modelos matemáticos para monitorear 

variables críticas en tiempo real sin necesidad de equipos costosos. Lo anterior facilita el cum-

plimiento de estándares de calidad para el producto y reduce el riesgo de fallos durante su 

elaboración. Baronas et al. (2016) emplearon un biosensor amperométrico basado en la glu-

cosa deshidrogenasa, enzima que cataliza la conversión de glucosa en especies que generan 

una señal eléctrica e interactúan con mediadores electroquímicos. Su comportamiento se mo-

dela a través de ecuaciones diferenciales parciales que describen la difusión y reacción de los 

compuestos, lo que permite optimizar su diseño en modelos matemáticos.

Finalmente, los modelos híbridos han permitido integrar datos experimentales con prin-

cipios teóricos, lo cual hace posible una biomanufactura más eficiente y sostenible.

Desafíos y oportunidades en el modelado de bioprocesos

A pesar del desarrollo que ha logrado la ciencia en el modelado de bioprocesos, éste aún en-

frenta varios desafíos clave. Uno de los mayores es comprender y representar tanto lo que 

ocurre dentro de las células como los procesos que tienen lugar en el medio donde éstas se 

desarrollan (modelos mecanicistas).

Por un lado, dentro de las células se llevan a cabo reacciones complejas, como la produc-

ción de energía o la síntesis de compuestos importantes. Por otro lado, en el medio de culti-

vo se dan fenómenos como la distribución de nutrientes, la formación de gradientes quími-

cos y el intercambio de gases. Lograr que un modelo matemático combine ambos aspectos 

de manera precisa es una tarea difícil, sobre todo porque los datos necesarios para describir 

estos procesos no siempre son fáciles de obtener o interpretar. Además, los sistemas bioló-

gicos son de naturaleza compleja y pueden presentar comportamientos no lineales, lo que 

complica aún más su modelado.

Otro desafío es el escalamiento: los modelos diseñados para entender un bioproceso en 

laboratorio no siempre funcionan igual en aplicaciones industriales. Las condiciones cam-

bian cuando se pasa a una escala mayor, lo que puede afectar tanto los microorganismos 

como los resultados del proceso. Así que los modelos que describen el proceso deben ser 

lo suficientemente robustos para entender de forma adecuada lo que puede cambiar debi-

do al cambio en la escala. En este contexto, el fortalecimiento y la optimización de los bio-

procesos dependen de una comprensión profunda de las leyes e interacciones que los ri-

gen, lo cual puede lograrse mediante la integración de métodos innovadores de medición, 

control y modelado (Becker, 2023).
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A pesar de estos retos, las oportunidades que ofrece el modelado son inmensas. Por un 

lado, los avances en herramientas computacionales y técnicas de aprendizaje automático han 

facilitado el desarrollo de modelos más precisos y flexibles. Por otro lado, los modelos híbri-

dos combinan lo mejor de los enfoques mecanicista y probabilístico, lo que permite un ba-

lance entre interpretabilidad y predicción.

Las predicciones no sólo ayudan a reducir costos, sino que también son esenciales para 

garantizar la sostenibilidad de los procesos industriales. Por ejemplo, al modelar la produc-

ción de bioplásticos se pueden ajustar de forma dinámica las condiciones del cultivo para 

maximizar el rendimiento y minimizar el impacto ambiental. En la industria farmacéutica, la 

modelación permite predecir y ajustar la síntesis de compuestos esenciales, lo cual asegura 

productos de alta calidad en tiempos más cortos.

Estos avances subrayan cómo la modelación no sólo supera desafíos técnicos, sino que 

también abre nuevas oportunidades para la innovación y la competitividad en el sector bio-

tecnológico. Para los estudiantes y profesionales que se especializan en este campo, la ca-

pacidad de desarrollar y aplicar modelos en bioprocesos no sólo mejora su comprensión de 

los sistemas biológicos, sino que también los posiciona como líderes en un mercado laboral 

que valora la eficiencia y la sostenibilidad.

Conclusión

La modelación en bioprocesos no sólo representa una herramienta de optimización, sino 

una pieza central para el desarrollo de procesos más seguros, eficientes y sostenibles. A pe-

sar de las dificultades, el campo ofrece grandes posibilidades. Nuevas tecnologías, como he-

rramientas computacionales avanzadas y técnicas experimentales más detalladas, permiten 

entender mejor los procesos biológicos y mejorarlos. Además, se están desarrollando enfo-

ques más flexibles que combinan modelos simples con otros más detallados, lo que ayuda a 

resolver problemas específicos y aplicar soluciones en distintos contextos.

Estas mejoras no sólo facilitan la comprensión de los bioprocesos, sino que también ayu-

dan a optimizar su funcionamiento, lo que abre caminos nuevos para su uso en áreas como 

la salud, la producción de alimentos y el cuidado del medio ambiente. A medida que las tec-

nologías de modelado avanzan, el impacto de estos enfoques en la biotecnología industrial 

es cada vez más significativo, al impulsar la innovación y asegurar la competitividad de esta 

industria clave en la economía global.
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