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RESUMEN

La modelacién matemdtica de bioprocesos es una herramien-
ta que permite estimar parametros, simular, optimizar, escalary
desarrollar estrategias de control, combinando principios de in-
genieria, biotecnologia y avances computacionales. El presen-
te trabajo explora las caracteristicas de los modelos mecanicis-
tas, probabilisticos e hibridos, y destaca sus aplicaciones en la
industria biotecnoldgica. El articulo presenta conceptos esen-
ciales de cada uno de los modelos descritos, ademas de ejem-
plos relevantes que ilustran su impacto econémico e industrial
en la biotecnologia. La modelacién no sélo impulsa una bioma-
nufactura mas eficiente, sino que también contribuye a enfren-

tar los retos ambientales y econdmicos actuales.
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ABSTRACT

Mathematical modeling of bioprocesses is a tool that allows for
parameter estimation, simulation, optimization, scaling,and de-
velopment of control strategies, combining engineering prin-
ciples, biotechnology, and computational advances. This study
explores the characteristics of mechanistic, probabilistic, and
hybrid models and highlights their applications in the biotech-
nology industry. The article presents essential concepts from
each of the described models, along with relevant examples
that illustrate their economic and industrial impact on biotech-
nology. Modeling not only drives more efficiency biomanufac-
turing but also contributes to addressing current environmen-

tal and economic challenges.
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Modelaciéon matematica en el disefio de bioprocesos sostenibles

Introduccion

Un bioproceso es una forma en que la ingenieria bioquimica aprovecha los organismos vivos,
como bacterias, hongos, levaduras, microalgas, células e incluso sus componentes, para trans-
formar materias primas en compuestos que pueden significar un beneficio en la vida diaria.
Métodos tradicionales, como la elaboracién de pan, cerveza o queso, son ejemplos cotidianos
de bioprocesos, ya que la reaccién principal de transformacién esta determinada por la accion
de los microorganismos. Estos procesos aplican los principios de la biologia y la ingenieria en
entornos controlados, como laboratorios o plantas de produccién, para resolver problemas o
satisfacer necesidades humanas. La ingenieria bioquimica moderna ha permitido perfeccio-
nary escalar algunas de estas técnicas. Asi, en los tltimos afos, se han desarrollado soluciones
innovadoras en dreas como la salud, la industria y la sostenibilidad ambiental.

En términos generales, la ingenieria de bioprocesos es un édrea de la ingenieria bioquimi-
ca que integra el conocimiento de la biotecnologia con herramientas propias de la ingenieria
quimica, como el disefio, control y optimizacién de sistemas, con el objetivo de hacer mas efi-
ciente la elaboracion de diversos productos a gran escala. Por ejemplo, las bacterias, hongos
y levaduras se emplean en la fabricacién de medicamentos, alimentos fermentados y biocom-
bustibles, mientras que las microalgas pueden producir suplementos nutricionales. Lo fasci-
nante es cémo estas diminutas formas de vida, combinadas con principios de ingenieria, pue-
den ofrecer soluciones practicas con unimpacto positivo en la calidad de vida de las personas.

Segun datos de Montoya (2021), el mercado mundial de bioproductos se estima en sete-
cientos mil millones de délares aproximadamente, y uno de los principales mercados es Norte-
américa. Asimismo, la Secretaria de Agricultura y Desarrollo Rural (2024) resalta laimportancia
de desarrollar nuevos negocios sostenibles que aprovechen los residuos agricolas e incorpo-
ren bioprocesos para la produccién de bienes innovadores.

El desarrollo de bioprocesos es fundamental para enfrentar retos globales, como la sos-
tenibilidad, de manera innovadora y eficiente. Sin embargo, esta tarea no es sencilla, ya que
implica considerar multiples factores biolégicos, quimicos y operativos. Analizar todos estos
elementos de manera simultdnea puede ser una tarea compleja y en ocasiones resultar im-
posible. En estos casos, las herramientas matematicas se vuelven indispensables, ya que per-
miten predeciry entender como se comportara el proceso a lo largo del tiempo. Gracias a eso
también es posible optimizar el bioproceso, disefarlo y operarlo.

La modelaciéon matematica permite predecir el comportamiento de un bioproceso sin
necesidad de realizar costosos y complejos experimentos. Mediante el uso de herramientas
de este tipo y computacionales es posible simular y optimizar sistemas biotecnolégicos bajo
ciertas consideraciones. Esta practica no sélo reduce los riesgos y recursos necesarios en la
fase experimental, sino que también proporciona una comprensién profunda de los proce-

sos involucrados, lo que facilita su escalado industrial y asegura la calidad del producto final.
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El desarrollo de modelos matematicos permite generar y organizar informacion, asi como es-
tablecer estrategias de control del bioproceso.

Este articulo tiene el objetivo de presentar de forma clara y sencilla los distintos tipos de
modelos matematicos aplicados al disefio de bioprocesos. Esta fundamentado en una revi-
sion estructurada de literatura especializada, con el propésito de mostrar el marco teérico
que sustenta los modelos matematicos aplicados en los bioprocesos. A lo largo del texto se
presentan y analizan distintos enfoques de modelado —mecanicistas, probabilisticos e hi-
bridos—, lo cual refuerza su importancia para el escalamiento, la optimizacién y el control

de procesos industriales.

Tipos de modelos en bioprocesos

Los modelos de bioprocesos se clasifican de varias formas. Una de ellas es clasificarlos en:
mecanisticos, que se basan en representaciones abstractas de un mecanismo a través de un
conjunto de ecuaciones, y probabilisticos, que se basan en la probabilidad y el analisis esta-
distico de datos. Asimismo, se pueden combinar ambas estrategias para generar modelos hi-
bridos. Cada uno tiene aplicaciones especificas y ventajas Unicas para enfrentar los retos de
la biomanufactura moderna. A continuacion se explora como estos modelos han transfor-

mado el desarrollo de bioprocesos y sus aplicaciones en la industria.

Modelos mecanicistas

Imaginemos que se tiene una receta para hornear un pastel. Se sabe cuanto tiempo debe es-
tar en el horno, a qué temperatura, y las cantidades exactas de harina, aztcar y huevos que
deberan usarse para formularlo. Los modelos mecanisticos son como esa receta detallada:
utilizan ecuaciones matematicas para describir paso a paso cémo funciona el bioproceso. Es-
tos modelos se basan en leyes cinéticas, como la ley de velocidad de reaccién, y describen el
crecimiento celular y la produccién de metabolitos mediante ecuaciones diferenciales fun-
damentadas en principios fisico-quimicos (Solle et al., 2017).

Por ejemplo, si se estd produciendo 4cido lactico en un biorreactor, este tipo de modelo
puede predecir como el pH, la temperatura o la concentracién de nutrientes afectara el cre-
cimiento de los microorganismos y la produccion del compuesto deseado. Es como ajustar
el horno y los ingredientes para garantizar que el pastel salga perfecto cada vez.

Ahora bien, los enfoques de modelado mecanistico se clasifican en cuatro tipos princi-
pales, segun dos criterios: la estructura celular y la homogeneidad de la poblacién, como se
muestra en la figura 1 (p. 5).

- Modelos no estructurados y no segregados. Estos modelos son los mds simples. Consi-
deran que todas las células dentro del sistema son iguales —en tamaro, edad y es-

tado metabodlico— y no incluyen detalles sobre la estructura interna de las células.
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Son ideales para describir procesos con dindmica sencilla, como la fermentacién por
lotes de una sola especie microbiana (figura 1a, p. 5).

- Modelos no estructurados y segregados. Aunque estos modelos tampoco incluyen
detalles internos de las células, si consideran que dentro de una poblacion puede
haber diferencias importantes, como variaciones en el tamafo o la edad. Usan fun-
ciones matematicas mas complejas para describir estas diferencias y son utiles en
sistemas donde estas caracteristicas tienen un impacto significativo, pero no es ne-
cesario modelar el metabolismo intracelular (figura 1b, p. 5).

- Modelos estructurados y no segregados. En este enfoque se incorporan detalles sobre
la estructura celular, como compartimentos internos o rutas metabdlicas; pero asu-
men que todas las células tienen una forma y tamafno homogéneos. Estos modelos
permiten un mayor nivel de detalle sobre los procesos metabdlicos y son adecua-
dos para sistemas complejos, como la produccién de proteinas recombinantes en
biorreactores (figura 1c, p. 5).

- Modelos estructurados y segregados. Este es el nivel mas complejo de modelado me-
canistico. Estos modelos consideran tanto la estructura interna de las células como
las diferencias entre ellas, como edad, tamaiio o estado metabdlico. Este enfoque es
ideal para describir poblaciones celulares heterogéneas o sistemas biolégicos con
multiples especies, como cultivos mixtos (figura 1d, p. 5).

Diversos trabajos han desarrollado modelos no estructurados y no segregados para des-
cribir procesos de produccién de metabolitos. Ejemplo de ello son los estudios de Jinescu et
al. (2014) y Sharma y Mishra (2014), en los que se proponen modelos para la produccién de
acido lactico.

El primero describe que el modelo de elaboracion de acido lactico es una cinética de or-
den cero, donde el sistema produce este dcido a una tasa constante, sin evidencias de dismi-
nucion de velocidad por agotamiento de sustrato (lactosa) o inhibicién por el propio 4cido.
A partir de ello se plantean ecuaciones de balance de masa que consideran tanto la transfe-
rencia de masa en el sistema como la cinética de produccién del acido. En el segundo se uti-
liza el modelo de Gompertz modificado, que describe la evolucion de la biomasa a partir del
logaritmo del cociente entre la poblacion celular en un tiempo dado y la inicial, asi como el
modelo de Luedeking-Piret para describir la produccién de acido lactico.

En ambos estudios se evalué el efecto de algunos factores, como el pH y la temperatu-
ra, en las tasas de crecimiento microbiano y en la producciéon de metabolitos. Estos estudios
mostraron una buena concordancia con los datos experimentales y simulados, por lo que
pueden emplearse para predecir la dindmica de la fermentacion lactica en lotes con variables
de proceso dentro de los rangos estudiados. Cabe destacar que estos modelos no conside-

ran el metabolismo ni la existencia de subpoblaciones —por ejemplo, células vivas/muertas
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Figura1
Clasificacion de los modelos mecanisticos
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o activas/inactivas— como variables dependientes, por lo cual se clasifican como no estruc-
turados y no segregados.

Un enfoque de modelo no estructurado y segregado para la produccién de acido lacti-
co es descrito por Spann et al. (2019). Este modelo permite el monitoreo preciso y en tiempo
real del cultivo de Streptococcus thermophilus. Emplea la ecuaciéon de Monod modificada con
inhibicion para describir el crecimiento; un modelo quimico que considera la disociacion de
acidos y bases débiles en el medio de cultivo, y simulaciones de Monte Carlo, utilizadas para
evaluar la incertidumbre en los pardmetros del modelo y calcular el riesgo de no alcanzar la
produccién deseada de biomasa. Con ese modelo se pudieron describir las variaciones en la
concentracién de sustrato, biomasa y pH en diferentes regiones del biorreactor.

El enfoque del modelamiento realizado fue no estructurado, porque no describe deta-
lles del metabolismo intracelular; pero si es segregado, dado que se modelan variaciones en
la concentracién de sustrato, biomasa y pH en diferentes regiones del biorreactor, lo que ge-
nera un comportamiento diferenciado en la poblacién de células dependiendo de su loca-
lizacién. En este caso, no todas las células estan en las mismas condiciones debido a los gra-
dientes de pH y sustrato, lo que implica segregacién en funcién del ambiente de cultivo.

La eleccién del tipo de modelo depende del propdsito y las necesidades del estudio. Si
se necesita rapidez y simplicidad, los modelos no estructurados y no segregados pueden
ser suficientes. En cambio, si se busca una representacién detallada y precisa del sistema, los
modelos estructurados y segregados seran la mejor opcién. Sin embargo, éstos son més de-
mandantes en términos de informacién y capacidad computacional, y a veces los recursos
computacionales con los que se cuenta limitan su uso. Un ejemplo de ello es el modelo desa-
rrollado por Oliveira et al. (2021), enfocado en el metabolismo central del carbono de Escheri-
chia coli, el cual simula la produccion de acido acrilico (AA) a través de tres rutas heterélogas:
glicerol, malonil-coA y -alanina. Utilizando el software copasi, se evalué el rendimiento de
cada ruta con glucosa o glicerol como fuente de carbono.

En cualquiera de los casos, los modelos mecanisticos son herramientas valiosas para com-

prender y optimizar los bioprocesos.

Modelos basados en datos (probabilisticos)

Ahora imaginemos que no se tiene una receta exacta, pero se ha recopilado informacién de
cientos de recetas de pasteles. A partir de ello, se sabe el tiempo de horneado, las tempera-
turas de cocciony la proporcion de los ingredientes, y se puede tener un buen analisis de los
resultados obtenidos en cada caso. Con esta informacion se puede usar inteligencia artifi-
cial para encontrar patrones y determinar qué combinaciones funcionan mejor para conse-
guir un pastel muy rico. Asi funcionan los modelos basados en datos: se apoyan en técnicas

estadisticas, probabilisticas y de aprendizaje automatico para analizar grandes cantidades
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de datos y predecir resultados sin necesidad de comprender todos los detalles del proce-
so (Narayanan et al., 2019).

En el desarrollo de los bioprocesos este tipo de modelos es muy util cuando el sistema
es tan complejo que no se puede modelar facilmente con principios mecanicistas. Por ejem-
plo, es posible optimizar la producciéon de un biocompuesto ajustando pardmetros con base
en las predicciones de un modelo entrenado con datos experimentales previos. Aunque es-
tos modelos no explican el proceso, son herramientas rapidas y efectivas para explorar con-
diciones 6ptimas y mejorar el rendimiento del proceso en tiempo real.

Garcia-Camacho et al. (2016) modelaron el crecimiento de la microalga Karlodinium vene-
ficum en cultivos por lotes, mediante el uso de redes neuronales artificiales (ANN), utilizando
en especifico redes de retropropagacion y avance, que sirven para capturar las interacciones
de nutrientes altamente no lineales en cultivos. Este tipo de modelo sirve cuando los tradi-
cionales, como el de Monod y sus variantes, son insuficientes para capturar las interacciones
no lineales de multiples nutrientes.

Un enfoque diferente para los modelos basados en datos es el modelamiento de apren-
dizaje automadtico estadistico —llamado en inglés statistical maching learning—, el cual re-
quiere para su aplicacién tan sélo una pequefa cantidad de datos experimentales. Este
enfoque tiene una perspectiva flexible basada en aprendizaje profundo para modelar re-
laciones no lineales. En el trabajo presentado por Sun et al. (2022), el enfoque del modela-
miento estd basado en un proceso de regresién gaussiana —gaussian process regression—,
que permite integrar informacion de multiples fuentes con distintos niveles de fidelidad, lo
cual optimiza la prediccién en escenarios donde la adquisicién de datos experimentales es
costosa y limitada.

Seanalizaron dos variantes del modelo: el Linear Autoregressive Gaussian Process (LARGP) y
el Nonlinear Autoregressive Gaussian Process (NARGP). Los resultados demostraron que para el
escalado de biorreactores, donde los datos presentan alta variabilidad, LARGP ofrece un mejor
desempeno, mientras que, en la transferencia de conocimiento entre lineas celulares, NARGP
es mas adecuado, ya que permite capturar relaciones no lineales entre los datos. Comparado
con métodos tradicionales, este tipo de modelos mejoré de forma significativa la precision
predictiva, en particular en condiciones de datos escasos. Los hallazgos reportados destacan
el potencial del aprendizaje automético en biomanufactura para mejorar la eficiencia y

confiabilidad en el modelado de bioprocesos.

Modelos hibridos
Los modelos hibridos combinan los métodos mecanicistas y los basados en datos para ofre-
cer lo mejor de ambos enfoques. Conocidos también como modelos de caja gris, permiten

interpretar los resultados en términos de mecanismos bioldgicos, fisicos y quimicos mientras
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Figura 2

Modelacién en bioprocesos
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aprovechan laflexibilidad del aprendizaje automatico; son especialmente tiles en situaciones
donde una comprension parcial del sistema es suficiente para optimizar el proceso.

En el trabajo de Narayanan et al. (2020) se desarrollé6 un modelo hibrido en arquitectura
serial, que combina un marco mecanicista basado en balances de masa con un componente
estadistico —una red neuronal artificial, ANN—, el cual estima las tasas especificas de consu-
mo/produccién de metabolitos y células. Este tipo de modelo se denomina modelo hibrido
serial, ya que las ANN alimentan de forma directa las ecuaciones diferenciales de balance. La
ANN se entrena para predecir las tasas, y luego éstas alimentan los balances de masa, que son
integrados para predecir la evolucién del sistema.

En ese caso, se evalud cuantitativamente la respuesta de modelos hibridos en compa-
racion con modelos estadisticos en la produccién de proteinas terapéuticas en cultivos ce-
lulares de mamiferos. El modelo hibrido predijo con mayor precisién la densidad celular, la
concentracién de lactato y el titulo de proteina. A diferencia de los tradicionales, el modelo
hibrido puede adaptarse y predecir escenarios no experimentados, con lo cual se reduce el

numero de ensayos necesarios en el laboratorio.

Aplicaciones de los modelos en la industria biotecnolégica
La modelacidn en bioprocesos ha revolucionado la forma en que se disefian y controlan los

procesos industriales, como se describe en lafigura 2. Desde la produccién de medicamentos,
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como antibiéticos y vacunas, hasta la de bioplasticos y biocombustibles, los productos deri-
vados de bioprocesos abarcan una amplia gama de aplicaciones industriales y comerciales.

Herramientas avanzadas de control de bioprocesos con base en modelos predictivos
(MPC, por sus siglas en inglés) han permitido un salto importante en el monitoreo y la op-
timizacion. Para ello se desarrollan representaciones matemadticas que describen el com-
portamiento del sistema, las cuales se emplean para disefiar controladores que ajustan las
variables del sistema en tiempo real. Con ello se aseguran condiciones dptimas durante la
operacion. Este enfoque incluye pasos esenciales, como el modelado, la simulacién y el di-
sefo del controlador antes de su implementacién en el sistema real.

Por su parte, el MpC introduce un nivel de sofisticacién adicional, al anticipar el compor-
tamiento futuro del sistema mediante algoritmos predictivos. Esto resulta especialmente
valioso en procesos dindmicos, ya que permite realizar ajustes proactivos para optimizar el
rendimiento y prevenir desviaciones. Ambas herramientas contribuyen a mejorar la calidad
del producto final, reducir costos operativos y garantizar la sostenibilidad de los procesos.

Por ejemplo, en la produccién de compuestos farmacéuticos, como la L-carnitina, se han
desarrollado modelos como el descrito por Illkova et al. (2015). En ese trabajo se desarrollé un
modelo para describir la produccidn de carnitina a partir del aminoacido L-lisina, consideran-
do las condiciones de operacion, el balance de masa y el uso de programacién neurodina-
mica. Como objetivo se planteé utilizar un modelo que representara la complejidad del sis-
temay la optimizacién del proceso.

También se ha reportado el empleo del modelamiento de bioprocesos para la obtencién
de productos farmacéuticos, como la luteina. En ese sentido, se desarrollé un modelo de re-
des neuronales artificiales que resulté muy eficiente para predecir la produccion de luteina
en sistemas fotobioldgicos, con aplicaciones potenciales en la optimizacién y el control de
bioprocesos (Del Rio-Chanona et al., 2017).

Asimismo, en la industria alimentaria, el modelamiento de los bioprocesos se aplica en
el desarrollo de enzimas y probidticos, para asegurar productos de alta calidad con menor
impacto ambiental. Tal es el caso del estudio llevado a cabo por Herndndez-Acevedo et al.
(2024), donde se realiz6 un modelamiento hidrodindmico y cinético de produccién de pec-
tinasas, enzimas de interés industrial para diferentes fines, entre ellos, el procesamiento de
jugos y vinos.

En este estudio se confirm¢ la eficacia del modelo de n tanques en serie para represen-
tar la produccién de pectinasas en un cultivo fungico dentro de un biorreactor de transpor-
te aéreo. El modelo logré integrar de manera precisa parametros hidrodindmicos, de trans-
ferencia de masa y cinéticos para predecir la dindmica del crecimiento del hongo, asi como
el consumo de oxigeno y pectina, y la sintesis de exopectinasas y endopectinasas. Los re-

sultados mostraron una alta concordancia con los datos experimentales, donde destacé el
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impacto de la tasa de transferencia de oxigeno y la concentracién de pectina en la produc-
cién inicial de estas enzimas.

Otra aplicacion clave de los modelos durante el desarrollo de un bioproceso es la utiliza-
cién de sensores virtuales. Estos elementos requieren modelos matematicos para monitorear
variables criticas en tiempo real sin necesidad de equipos costosos. Lo anterior facilita el cum-
plimiento de estandares de calidad para el producto y reduce el riesgo de fallos durante su
elaboracién. Baronas et al. (2016) emplearon un biosensor amperométrico basado en la glu-
cosa deshidrogenasa, enzima que cataliza la conversion de glucosa en especies que generan
una sefal eléctrica e interactian con mediadores electroquimicos. Su comportamiento se mo-
dela a través de ecuaciones diferenciales parciales que describen la difusién y reaccién de los
compuestos, lo que permite optimizar su disefo en modelos matematicos.

Finalmente, los modelos hibridos han permitido integrar datos experimentales con prin-

cipios teoricos, lo cual hace posible una biomanufactura més eficiente y sostenible.

Desafios y oportunidades en el modelado de bioprocesos

A pesar del desarrollo que ha logrado la ciencia en el modelado de bioprocesos, éste alin en-
frenta varios desafios clave. Uno de los mayores es comprender y representar tanto lo que
ocurre dentro de las células como los procesos que tienen lugar en el medio donde éstas se
desarrollan (modelos mecanicistas).

Por un lado, dentro de las células se llevan a cabo reacciones complejas, como la produc-
cion de energia o la sintesis de compuestos importantes. Por otro lado, en el medio de culti-
vo se dan fendmenos como la distribucion de nutrientes, la formacién de gradientes quimi-
cos y el intercambio de gases. Lograr que un modelo matematico combine ambos aspectos
de manera precisa es una tarea dificil, sobre todo porque los datos necesarios para describir
estos procesos no siempre son faciles de obtener o interpretar. Ademas, los sistemas biol6-
gicos son de naturaleza compleja y pueden presentar comportamientos no lineales, lo que
complica ain mas su modelado.

Otro desafio es el escalamiento: los modelos disefados para entender un bioproceso en
laboratorio no siempre funcionan igual en aplicaciones industriales. Las condiciones cam-
bian cuando se pasa a una escala mayor, lo que puede afectar tanto los microorganismos
como los resultados del proceso. Asi que los modelos que describen el proceso deben ser
lo suficientemente robustos para entender de forma adecuada lo que puede cambiar debi-
do al cambio en la escala. En este contexto, el fortalecimiento y la optimizacién de los bio-
procesos dependen de una comprensién profunda de las leyes e interacciones que los ri-
gen, lo cual puede lograrse mediante la integracion de métodos innovadores de medicién,

control y modelado (Becker, 2023).
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A pesar de estos retos, las oportunidades que ofrece el modelado son inmensas. Por un
lado, los avances en herramientas computacionalesy técnicas de aprendizaje automatico han
facilitado el desarrollo de modelos mas precisos y flexibles. Por otro lado, los modelos hibri-
dos combinan lo mejor de los enfoques mecanicista y probabilistico, lo que permite un ba-
lance entre interpretabilidad y prediccién.

Las predicciones no so6lo ayudan a reducir costos, sino que también son esenciales para
garantizar la sostenibilidad de los procesos industriales. Por ejemplo, al modelar la produc-
cién de bioplasticos se pueden ajustar de forma dindmica las condiciones del cultivo para
maximizar el rendimiento y minimizar el impacto ambiental. En la industria farmacéutica, la
modelacién permite predecir y ajustar la sintesis de compuestos esenciales, lo cual asegura
productos de alta calidad en tiempos mas cortos.

Estos avances subrayan cémo la modelacién no sélo supera desafios técnicos, sino que
también abre nuevas oportunidades para la innovacién y la competitividad en el sector bio-
tecnoldgico. Para los estudiantes y profesionales que se especializan en este campo, la ca-
pacidad de desarrollar y aplicar modelos en bioprocesos no s6lo mejora su comprension de
los sistemas bioldgicos, sino que también los posiciona como lideres en un mercado laboral

que valora la eficiencia y la sostenibilidad.

Conclusion

La modelacién en bioprocesos no sélo representa una herramienta de optimizacion, sino
una pieza central para el desarrollo de procesos mas seguros, eficientes y sostenibles. A pe-
sar de las dificultades, el campo ofrece grandes posibilidades. Nuevas tecnologias, como he-
rramientas computacionales avanzadas y técnicas experimentales mas detalladas, permiten
entender mejor los procesos biolégicos y mejorarlos. Ademas, se estan desarrollando enfo-
ques mas flexibles que combinan modelos simples con otros mas detallados, lo que ayuda a
resolver problemas especificos y aplicar soluciones en distintos contextos.

Estas mejoras no sdlo facilitan la comprension de los bioprocesos, sino que también ayu-
dan a optimizar su funcionamiento, lo que abre caminos nuevos para su uso en areas como
la salud, la produccion de alimentos y el cuidado del medio ambiente. A medida que las tec-
nologias de modelado avanzan, el impacto de estos enfoques en la biotecnologia industrial
es cada vez maés significativo, al impulsar la innovaciéon y asegurar la competitividad de esta

industria clave en la economia global.
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